Prime Flip AtCoder - 2689
发现我们每次区间取反,相邻位置的正反关系只有两个位置发生改变
我们定义bi为ai和ai-1的正反关系,即ai=ai-1时bi=0,否则bi=1,每次取反l~r,b[l]和b[r+1]会发生改变
容易发现b[i]=1的位置一定是偶数个,我们将他们取出来
因为每次取反一定会改变两个b[i],所以我们将这些位置两两配对消去
两个位置i,j,有三种配对
|i-j|是奇素数,可以直接消去,最少花费1次操作
|i-j|是偶数,可以由奇素数的和(哥德巴赫猜想?)或差得到,最少花费2次
|i-j|是奇非素数,由奇素数和偶数差得到,最少花费3次
将b[i]=1的i按奇偶性分为两个集合
不同集合之间的配对是第1、3种配对
同一集合间的配对是第2种
可以做第一种配对的i,j之间连边,找二分图最大匹配
剩下的两个集合内部两两第二种配对
如果还余1个,作第三种配对
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<cstdio>
using namespace std;
#define CLR(a,b) memset(a,b,sizeof(a))
const int maxn = 1e7 + 10;
int a[maxn];
int b[maxn];
int n; int point[210];
int edge[210][210];
int cnt = 0; int nx,ny;
int vis[220];
int cx[220],cy[220];
int dx[220],dy[220]; int prime[maxn],primesize,phi[maxn];
bool isprime[maxn];
void getlist(int listsize)
{
memset(isprime,1,sizeof(isprime));
isprime[1]=false;
for(int i=2;i<=listsize;i++)
{
if(isprime[i])prime[++primesize]=i;
for(int j=1;j<=primesize&&i*prime[j]<=listsize;j++)
{
isprime[i*prime[j]]=false;
if(i%prime[j]==0)break;
}
}
} void pre()
{
getlist(maxn-1);
cin>>n;
for(int i=1;i<=n; i++){
int num;
cin>>num;
a[num] = 1;
if(a[num-1]!=a[num]) b[num] = 1;
else b[num] = 0;
if(a[num]!=a[num+1]) b[num+1] = 1;
else b[num+1] = 0;
}
for(int i=1; i<maxn; i++){
if(b[i] == 1) point[++cnt] = i;
}
for(int i=1; i<=cnt; i++){
if(point[i]%2 == 1) nx++,dx[nx] = point[i];
else ny++,dy[ny] = point[i];
}
// cout<<nx<<" "<<ny<<endl;
for(int i=1; i<=nx; i++){
for(int j=1; j<=ny; j++){
if(isprime[abs(dx[i] - dy[j])])
edge[i][j] = 1;
// cout<<dx[i]<<" "<<dy[j]<<endl;
}
}
} bool path(int u)
{
for(int i=1; i<=ny; i++){
if(edge[u][i] && !vis[i]){
vis[i] = 1;
if(path(cy[i]) || cy[i] == -1){
cx[u] = i;
cy[i] = u;
return 1;
}
}
}
return 0;
} int maxmatch()
{
int res = 0;
CLR(cx,0xff);
CLR(cy,0xff); for(int i=1;i<=nx;i++){
CLR(vis,0);
res += path(i);
}
return res;
} int main()
{
// freopen("in.txt","r",stdin);
pre();
int ans = 0;
int edgenum = maxmatch();
// cout<<"edge "<<edgenum<<endl;
// for(int i = 1; i<=nx; i++)
// cout<<dx[i]<<" "<<dy[cx[i]]<<endl;
ans += edgenum;
ans += ((nx-edgenum)/2)*2;
ans += ((ny-edgenum)/2)*2;
if((nx-edgenum)%2 == 1) ans+=3;
cout<<ans<<endl;
return 0;
}
Prime Flip AtCoder - 2689的更多相关文章
- [Arc080F]Prime Flip
[Arc080F]Prime Flip Description 你有无限多的"给给全",编号为1,2,3,....开始时,第x1,x2,...,xN个"给给全" ...
- 【Atcoder】ARC 080 F - Prime Flip
[算法]数论,二分图最大匹配 [题意]有无限张牌,给定n张面朝上的牌的坐标(N<=100),其它牌面朝下,每次操作可以选定一个>=3的素数p,并翻转连续p张牌,求最少操作次数使所有牌向下. ...
- Prime Distance POJ - 2689 (数学 素数)
The branch of mathematics called number theory is about properties of numbers. One of the areas that ...
- Prime Distance POJ - 2689 线性筛
一个数 $n$ 必有一个不超过 $\sqrt n$ 的质因子. 打表处理出 $1$ 到 $\sqrt n$ 的质因子后去筛掉属于 $L$ 到 $R$ 区间的素数即可. Code: #include&l ...
- AT2689 [ARC080D] Prime Flip
简要题解如下: 区间修改问题,使用差分转化为单点问题. 问题变成,一开始有 \(2n\) 个点为 \(1\),每次操作可以选择 \(r - l\) 为奇质数的两个点 \(l, r\) 使其 ^ \(1 ...
- 【arc080F】Prime Flip
Portal --> arc080_f Solution 这题的话..差分套路题(算吗?反正就是想到差分就很好想了qwq) (但是问题就是我不会这种套路啊qwq题解原话是:&quo ...
- 【ARC080F】Prime Flip 差分+二分图匹配
Description 有无穷个硬币,初始有n个正面向上,其余均正面向下. 你每次可以选择一个奇质数p,并将连续p个硬币都翻转. 问最小操作次数使得所有硬币均正面向下. Input 第一行 ...
- AT2689 Prime Flip
传送门 这个题是真的巧妙 首先一个很巧妙的思路,差分 考虑假如\(a_i!=a_{i-1}\),则\(b_i=1\),否则\(b_i=0\) 这样一来,一个区间的翻转就变成了对于两个数的取反了 然后我 ...
- [atARC080F]Prime Flip
构造一个数组$b_{i}$(初始为0),对于操作$[l_{i},r_{i}]$,令$b_{l_{i}}$和$b_{r_{i}+1}$值异或1,表示$i$和$i-1$的差值发生改变,最终即要求若干个$b ...
随机推荐
- grid - 网格项目层级
网格项目可以具有层级和堆栈,必要时可能通过z-index属性来指定. 1.在这个例子中,item1和item2的开始行都是1,item1列的开始是1,item2列的开始是2,并且它们都跨越两列.两个网 ...
- RobotFrameWork编写接口测试及如何断言
1. 前言 本篇是第一系列(Http接口自动化)的第五课程,如果对系列课程大纲不清楚的,可以查看<RobotFramework系列免费课程-开课了~>. 前面我们介绍了,在真正实施前,需先 ...
- MySQL技术内幕读书笔记(三)——文件
目录 文件 参数文件 日志文件 套接字文件 pid文件 表结构定义文件 INNODB存储引擎文件 文件 有以下类型文件 参数文件:告诉MYSQL实例启动时在哪里找到数据库文件,并且制定某些初始化参 ...
- 网络协议学习(2)---IP地址
一.IPv4地址 IPv4地址为32bit地址,分为5类(ABCDE,这里不讨论特殊用途的D和E类). 通常我们八位一看,写成4个部分,例如:00000000 00000000 00000000 00 ...
- ANTLR v4 专业术语集
记录<The Definitive ANTLR 4 Reference>中出现的专业术语: grammar 文法,一种形式化(formal)的语言描述. syntax 语法 phrase ...
- TF常用知识
命名空间及变量共享 # coding=utf-8 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt; ...
- Matlab信号处理基础
一. 简介 离散傅立叶.离散余弦和离散小波变换是图像.音频信号常用基础操作,时域信号转换到不同变换域以后,会导致不同程度的能量集中,信息隐藏利用这个原理在变换域选择适当位置系数进行修改,嵌入信息,并确 ...
- 大数据架构:搭建CDH5.5.1分布式集群环境
yum install -y ntp gcc make lrzsz wget vim sysstat.x86_64 xinetd screen expect rsync bind-utils ioto ...
- activemq 安装 部署
ActiveMQ是一种开源的,实现了JMS1.1规范的,面向消息(MOM)的中间件,为应用程序提供高效的.可扩展的.稳定的和安全的企业级消息通信.ActiveMQ使用Apache提供的授权,任何人都可 ...
- 关于JVM内存的N个问题
JVM的内存区域是怎么划分的? JVM的内存划分中,有部分区域是线程私有的,有部分是属于整个JVM进程:有些区域会抛出OOM异常,有些则不会,了解JVM的内存区域划分以及特征,是定位线上内存问题的基础 ...