雅克比迭代算法(Jacobi Iterative Methods) -- [ mpi , c++]
雅克比迭代,一般用来对线性方程组,进行求解。形如:
\(a_{11}*x_{1} + a_{12}*x_{2} + a_{13}*x_{3} = b_{1}\)
\(a_{21}*x_{1} + a_{22}*x_{2} + a_{23}*x_{3} = b_{2}\)
\(a_{31}*x_{1} + a_{32}*x_{2} + a_{33}*x_{3} = b_{3}\)
我们需要求解出\(x_{1}\) ,\(x_{2}\) ,\(x_{3}\),我们对这组方程进行变换:
\(x_{1}=\frac{1}{a_{11}}(b_{1} -a_{12}*x_{2} -a_{13}*x_{3})\)
\(x_{2}=\frac{1}{a_{21}}(b_{2} -a_{21}*x_{1} -a_{23}*x_{3})\)
\(x_{3}=\frac{1}{a_{31}}(b_{3} -a_{31}*x_{1}-a_{32}*x_{2})\)
我们不妨假设 \(x_{0}^{0}=(X_{1}^{0},X_{2}^{0},X_{3}^{0})\) ,当我们代入上述公式的时候,我们就会得到一组新的 \(x_{0}^{1}=(X_{1}^{1},X_{2}^{1},X_{3}^{1})\) ,此刻我们称之为一次迭代.
然后我们将得到的X1,X2,X3再次代入公式,我们将会得到第二次迭代, 当我们重复这种迭代的时候,我们会得到第K次迭代:
\(x^{k}=(X_{1}^{k},X_{2}^{k},X_{3}^{k})\) , \(k = 1,2,3...n\)
我们将其归纳成一般式子:
eg: 对于方程组:
求解:
我们先将其变形:
然后,我们假设:
并将其代入得到:
我们将得到的X1,x2,x3再次代入方程中,反复迭代,将会得到如下:
最终我们将会得到一个收敛值,该组值,就是我们得到的解(会非常的逼近真实解)
那么这种方法,也可以用来求解矩阵:
对于方程: Ax =b ; 我们设定 A矩阵为: ,b矩阵为:
, x矩阵为:
到这里,每个人都有自己的解法,直接的解法是将 x = \(A^{-1}\)b,但是A的逆矩阵\(A^{-1}\),计算较为复杂,我们这里需要一点小的tricks ,我们将A矩阵拆分成为一个对角矩阵D,下三角矩阵L,上三角矩阵U,即
这样的话,公式 Ax = b 就变成了 ( D - L -U )x = b ,然后我们就可以得到:
Dx = b + (L+U)x ,当我们得到这个公式的时候,求解D的逆矩阵就容易了很多,我们得到D的逆矩阵为:
然后,我们将D移到右边变成:
这个公式,和我们上面描述的雅克比迭代是不是长得很像,然后我们可以将其一般化为:
我们知道A是一个已知的常量矩阵,因而D,L,U都是已知矩阵,那么我们可以简化为:
\(T = D^{-1}*( L +U)\) , \(c = D^{-1}*b\) ;
根据这一个思想,我们可以得到一个伪代码:
实现代码为:
参考资料为:
https://www3.nd.edu/~zxu2/acms40390F12/Lec-7.3.pdf
雅克比迭代算法(Jacobi Iterative Methods) -- [ mpi , c++]的更多相关文章
- 多线性方程组迭代算法——Jacobi迭代算法的Python实现
多线性方程(张量)组迭代算法的原理请看这里:若想看原理部分请留言,不方便公开分享 Gauss-Seidel迭代算法:多线性方程组迭代算法——Gauss-Seidel迭代算法的Python实现 impo ...
- 线性方程组迭代算法——Jacobi迭代算法的python实现
原理: 请看本人博客:线性方程组的迭代求解算法——原理 代码: import numpy as np max=100#迭代次数上限 Delta=0.01 m=2#阶数:矩阵为2阶 n=3#维数:3X3 ...
- 多线性方程组迭代算法——Gauss-Seidel迭代算法的Python实现
多线性方程组(张量)迭代算法的原理请看这里:原理部分请留言,不方便公开分享 Jacobi迭代算法里有详细注释:多线性方程组迭代算法——Jacobi迭代算法的Python实现 import numpy ...
- 软阈值迭代算法(ISTA)和快速软阈值迭代算法(FISTA)
缺月挂疏桐,漏断人初静. 谁见幽人独往来,缥缈孤鸿影. 惊起却回头,有恨无人省. 拣尽寒枝不肯栖,寂寞沙洲冷.---- 苏轼 更多精彩内容请关注微信公众号 "优化与算法" ISTA ...
- c#迭代算法
//用迭代算法算出第m个值 //1,1,2,3,5,8...; //{1,0+1,1+1,1+2,2+3 ,3+5} static void Main(string[] arg ...
- 【C/C++】求解线性方程组的雅克比迭代与高斯赛德尔迭代
雅克比迭代: /* 方程组求解的迭代法: 雅克比迭代 */ #include<bits/stdc++.h> using namespace std; ][]; ]; void swapA( ...
- ICP算法(Iterative Closest Point迭代最近点算法)
标签: 图像匹配ICP算法机器视觉 2015-12-01 21:09 2217人阅读 评论(0) 收藏 举报 分类: Computer Vision(27) 版权声明:本文为博主原创文章,未经博主允许 ...
- 【转】ICP算法(Iterative Closest Point迭代最近点算法)
原文网址:https://www.cnblogs.com/sddai/p/6129437.html.转载主要方便随时可以查看,如有版权要求请及时联系. 最近在做点云匹配,需要用c++实现ICP算法,下 ...
- barnes-hut算法 && Fast Multipole Methods算法
barnes-hut算法 http://arborjs.org/docs/barnes-hut Fast Multipole Methods算法 http://www.umiacs.umd.edu/~ ...
随机推荐
- Harmonic Number(调和级数+欧拉常数)
In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers ...
- TF:利用TF的train.Saver载入曾经训练好的variables(W、b)以供预测新的数据—Jason niu
import tensorflow as tf import numpy as np W = tf.Variable(np.arange(6).reshape((2, 3)), dtype=tf.fl ...
- Go版GTK:环境搭建(windows)
Go版GTK:环境搭建(windows) https://blog.csdn.net/tennysonsky/article/details/79221507 所属专栏: Go语言开发实战 1 ...
- HDU 3749 Financial Crisis (点双连通+并查集)
<题目连接> 题目大意: 给你一个(保证输入无重边,无自环)无向图,然后有下面Q条询问,每条询问为:问你u点与v点之间有几条(除了首尾两点外,其他点不重复)的路径.如果有0条或1条输出0或 ...
- format 用法
hon2.6开始,新增了一种格式化字符串的函数str.format(),可谓威力十足.那么,他跟之前的%型格式化字符串相比,有什么优越的存在呢?让我们来揭开它羞答答的面纱.语法 它通过{}和:来代替% ...
- 网络基础配置--usg系统升级
1.usg2000系统升级 1.1.TFTP设置 这里用到一个工具:3CDeamon, 是在由3Com开发类别 Web Development Freeware 软件,是一个简易服务器工具,含TFTP ...
- Java笔记(十五) 并发包
并发包 Java中还有一套并发工具包,位于包java.util.concurrent下,里面包括很多易用 且很多高性能的并发开发工具. 一.原子变量和CAS 为什么需要原子变量,因为对于例如count ...
- Java笔记(一)编程基础与二进制
编程基础与二进制 一.编程基础 函数调用的基本原理: 函数调用中的问题: 1)参数如何传递? 2)函数如何知道返回什么地方? 3)函数结果如何传递给调用方? 解决思路是使用内存来函数调用过程中需要的数 ...
- mongoose+koa2 按照_id更新多条数据,删除数组中的字段,然后添加新的字段,$pull和$or结合使用
await model.photo.update({ _id: { $in: photoIdsParam } }, { $pull: { customerIds: { code: custCode, ...
- Jmeter5 实现多机集群压测(局域网组成多机集群)
想要模拟高并发用户访问的场景,用Jmeter5实现的话,单靠一台PC机,资源是不够的,包括单机的内存.使用端口数量等,所以最好是通过多台PC机组成几个集群来对服务器进行压测. 本文目录: 1.软硬件配 ...