问题导读

1.Kafka有何特性?
2.Kafka有哪些组件?

背景:
     当今社会各种应用系统诸如商业、社交、搜索、浏览等像信息工厂一样不断的生产出各种信息,在大数据时代,我们面临如下几个挑战:

  • 如何收集这些巨大的信息
  • 如何分析它
  • 如何及时做到如上两点

以上几个挑战形成了一个业务需求模型,即生产者生产(produce)各种信息,消费者消费(consume)(处理分析)这些信息,而在生产者与消费者之间,需要一个沟通两者的桥梁-消息系统。
     从一个微观层面来说,这种需求也可理解为不同的系统之间如何传递消息。

Kafka诞生:由 linked-in 开源

kafka-即是解决这类问题的一个框架,它实现了生产者和消费者之间的无缝连接。
kafka-高产出的分布式消息系统(A high-throughput distributed messaging system)
Kafka特性:它形容自己的设计是独一无二的,先看一下它有如何过人之处:

  • 快:单个kafka服务每秒可处理数以千计客户端发来的几百MB数据。
  • 可扩展性:一个单一集群可作为一个大数据处理中枢,集中处理各种类型业务
  • 持久化:消息被持久化到磁盘(可处理TB数据级别数据但仍保持极高数据处理效率),并且有备份容错机制
  • 分布式:着眼于大数据领域,支持分布式,集群可处理每秒百万级别消息
  • 实时性:生产出的消息可立即被消费者消费

<ignore_js_op>

file:///C:/Users/ADMINI~1/AppData/Local/Temp/enhtmlclip/Image(2).png
Kafka的组件:

  • topic:消息存放的目录即主题
  • Producer:生产消息到topic的一方
  • Consumer:订阅topic消费消息的一方
  • Broker:Kafka的服务实例就是一个broker

如下图所示,Producer生产的消息通过网络发送给Kafka cluster,而Consumer从其中消费消息

<ignore_js_op>

file:///C:/Users/ADMINI~1/AppData/Local/Temp/enhtmlclip/Image(3).png
Topic 和Partition:

消息发送时都被发送到一个topic,其本质就是一个目录,而topic由是由一些Partition Logs(分区日志)组成,其组织结构如下图所示:

file:///C:/Users/ADMINI~1/AppData/Local/Temp/enhtmlclip/Image.png
     我们可以看到,每个Partition中的消息都是有序的,生产的消息被不断追加到Partition log上,其中的每一个消息都被赋予了一个唯一的offset值。
     Kafka集群会保存所有的消息,不管消息有没有被消费;我们可以设定消息的过期时间,只有过期的数据才会被自动清除以释放磁盘空间。比如我们设置消息过期时间为2天,那么这2天内的所有消息都会被保存到集群中,数据只有超过了两天才会被清除。

Kafka需要维持的元数据只有一个--消费消息在Partition中的offset值,Consumer每消费一个消息,offset就会加1。其实消息的状态完全是由Consumer控制的,Consumer可以跟踪和重设这个offset值,这样的话Consumer就可以读取任意位置的消息。

把消息日志以Partition的形式存放有多重考虑,第一,方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;第二就是可以提高并发,因为可以以Partition为单位读写了。

分布式:
     这些Partitions分布在集群的每一台server上,而每一个Partition在集群中都可以有多个备份,这个备份数量是可配置的。
     每个Partition都有一个leader server,而其他备份的server都称为followers,只有leader服务器才会处理这个Partition上所有的读写请求,而其它followers则被动的复制leader上的数据。如果一个leader挂掉了,followers中的一个服务器则会自动升级为leader。因此,其实集群中的每个服务器都扮演着一个Partition的leader服务器,和其它Partition的follower服务器。

Producers:
     Producer可以根据自己的选择发布消息到一个主题,Producer也可以自己决定把消息发布到这个主题的哪个Partition,当然我们可以选择API提供的简单的分区选择算法,也可以自己去实现一个分区选择算法。

Consumers:
     消息传递通常由两种模式,queuing(队列)和publish-subscribe (发布-订阅)

  • queuing:每个Consumer从消息队列中取走一个消息
  • pub-scrib:消息被广播到每个Consumer

Kafka通过提供了一个对Consumer的抽象来同时实现这两种模式-ConsumerGroup。Consumer实例需要给自己指定一个ConsumerGroup的名字,如果所有的实例都用同一个ConsumerGroup名字,那么这些Consumer就会以queuing的模式工作;如果所有的实例分别用的不同的ConsumerGroup名字,那么它们就以public-subscribe模式工作。

如下图所示:含两台server的集群一共有p0~p3四个Partition,两个Consumer Group,在Group内部是以queuing的模式消费Partition,在Group之间是以pub-scrib模式消费。
 
  file:///C:/Users/ADMINI~1/AppData/Local/Temp/enhtmlclip/Image(1).png
消息顺序性:
     Kafka是如何确保消息消费的顺序性的呢?前面讲到过Partition,消息在一个Partition中的顺序是有序的,但是Kafka只保证消息在一个Partition中有序,如果要想使整个topic中的消息有序,那么一个topic仅设置一个Partition即可。

转自:http://www.aboutyun.com/thread-11113-1-1.html

Kafka详解一:Kafka简介的更多相关文章

  1. kafka详解(一)--kafka是什么及怎么用

    kafka是什么 在回答这个问题之前,我们需要先了解另一个东西--event streaming. 什么是event streaming 我觉得,event streaming 是一个动态的概念,它描 ...

  2. kafka详解(二)--kafka为什么快

    前言 Kafka 有多快呢?我们可以使用 OpenMessaging Benchmark Framework 测试框架方便地对 RocketMQ.Pulsar.Kafka.RabbitMQ 等消息系统 ...

  3. yum是什么?repo文件详解,epel简介,yum源的更换,repo和epel区别

    yum是什么?repo文件详解,epel简介,yum源的更换,repo和epel区别 简单概括: repo和epel的关系 repo是配置源的,即配置从哪里下载包(以及依赖关系)的. epel是作为桥 ...

  4. Kafka 详解(一)------简介

    在前面几篇博客我们介绍过一种消息中间件——RabbitMQ,本篇博客我们介绍另外一个消息中间件——Kafka,Kafka是由LinkedIn开发的,使用Scala编写,是一种分布式,基于发布/订阅的消 ...

  5. [转]kafka详解

    一.入门     1.简介     Kafka is a distributed,partitioned,replicated commit logservice.它提供了类似于JMS的特性,但是在设 ...

  6. (转)kafka 详解

    kafka入门:简介.使用场景.设计原理.主要配置及集群搭建(转) 问题导读: 1.zookeeper在kafka的作用是什么? 2.kafka中几乎不允许对消息进行"随机读写"的 ...

  7. Kafka 详解(二)------集群搭建

    这里通过 VMware ,我们安装了三台虚拟机,用来搭建 kafka集群,虚拟机网络地址如下: hostname                      ipaddress             ...

  8. kafka详解

    一.基本概念 介绍 Kafka是一个分布式的.可分区的.可复制的消息系统.它提供了普通消息系统的功能,但具有自己独特的设计. 这个独特的设计是什么样的呢? 首先让我们看几个基本的消息系统术语:Kafk ...

  9. 大数据入门第十七天——storm上游数据源 之kafka详解(二)常用命令

    一.kafka常用命令 1.创建topic bin/kafka-topics. --replication-factor --zookeeper mini1: // 如果配置了PATH可以省略相关命令 ...

  10. Kafka详解五:Kafka Consumer的底层API- SimpleConsumer

    问题导读 1.Kafka如何实现和Consumer之间的交互?2.使用SimpleConsumer有哪些弊端呢? 1.Kafka提供了两套API给Consumer The high-level Con ...

随机推荐

  1. HDU4781(2013成都站A题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4781 题目大意:给你n个点m条边,要求你构造一个符合条件的有向联通图(若无法构造输出-1,否则输出任意 ...

  2. SQL查临时表没有返回数据集

    问题描述:在SQL中可以查询到数据,返回不到页面上. 解决办法: set nocount on create table #list [转] 每次我们在使用查询分析器调试SQL语句的时候,通常会看到一 ...

  3. PSSH 批量管理服务器

    pssh命令是一个python编写可以在多台服务器上执行命令的工具,同时支持拷贝文件,是同类工具中很出色的,类似pdsh,个人认为相对pdsh更为简便,使用必须在各个服务器上配置好密钥认证访问. 1. ...

  4. $(document).ready() $(window).load 及js的window.onload

    1.$(document).ready()  简写为$(function(){}) DOM结构绘制完成执行,而无需等到图片或其他媒体下载完毕. 2.$(window).load  在有时候确实我们有需 ...

  5. MySQL版本与工具

    MySQL各个版本区别 MySQL 的官网下载地址:http://www.mysql.com/downloads/ 在这个下载界面会有几个版本的选择. 1. MySQL Community Serve ...

  6. javascript实例:路由的跳转

    <!doctype html> <html lang="en"> <body> <a href="#/home"> ...

  7. Linux中的判断式

    格式一:test [参数] 判断内容格式二:[ [参数] 判断内容 ] 说明: a.格式二可以认为是格式一的缩写 b.格式二里中括号和内容之间要有空格 基于文件的判断-d 判断文件是否存在,并且是目录 ...

  8. hbase中清空整张表的数据

    hbase(main):005:0> truncate 'fr:test' Truncating 'FaceBase' table (it may take a while): - Disabl ...

  9. 003-ARP地址解析协议

    一.概念 地址解析协议,即ARP(Address Resolution Protocol),是根据IP地址获取物理地址的一个TCP/IP协议.主机发送信息时将包含目标IP地址的ARP请求广播到网络上的 ...

  10. 【saltstack】saltstack执行结果和事件存储到mysql

    前言 项目中使用saltstack有一段时间了,之前都是在控制台操作,后来感觉越来越不方便,每次操作需要登陆服务器,还需要记一堆命令.最重要的是,公司进新人之后,新人由于不熟悉saltstack,容易 ...