学长写的:
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
#define maxn 10005
int dfn[maxn];///代表最先遍历到这个点的时间
int low[maxn];///这个点所能到达之前最早的时间点
int Father[maxn];///保存这个节点的父亲节点
int n, m, Time, top;///Time 时间点,  top用于栈操作
vector<vector<int> > G;

void Init()
{
    G.clear();
    G.resize(n+1);
    memset(low, 0, sizeof(low));
    memset(dfn, 0, sizeof(dfn));
    memset(Father, 0, sizeof(Father));
    Time = 0;
}

void Tarjan(int u,int fa)
{
    low[u] = dfn[u] = ++Time;
    Father[u] = fa;
    int len = G[u].size(), v;

for(int i=0; i<len; i++)
    {
        v = G[u][i];

if(!dfn[v])
        {
            Tarjan(v, u);
            low[u] = min(low[u], low[v]);
        }
        else if(fa != v)///假如我们在这里写上了 low[u] = min(low[v], low[u]),那么就相当于我们由v回到了v之前的节点
            low[u] = min(dfn[v], low[u]);
    }
}
void solve()
{/**
求割点
一个顶点u是割点,当且仅当满足(1)或(2)
(1) u为树根,且u有多于一个子树。
(2) u不为树根,且满足存在(u,v)为树枝边(或称 父子边,即u为v在搜索树中的父亲),使得 dfn(u)<=low(v)。
(也就是说 V 没办法绕过 u 点到达比 u dfn要小的点)
注:这里所说的树是指,DFS下的搜索树*/
    int RootSon = 0, ans = 0;///根节点儿子的数量
    bool Cut[maxn] = {false};///标记数组,判断这个点是否是割点

Tarjan(1,0);

for(int i=2; i<=n; i++)
    {
        int v = Father[i];
        if(v == 1)///也是就说 i的父亲是根节点
            RootSon ++;
        else if(dfn[v] <= low[i])
            Cut[v] = true;
    }

for(int i=2; i<=n; i++)
    {
        if(Cut[i])
            ans ++;
    }
    if(RootSon > 1)
        ans++;

printf("%d\n", ans);
}
int main()
{
    while(scanf("%d", &n), n)
    {
        int a, b;
        char ch;
        Init();
        while(scanf("%d", &a), a)
        {
            while(scanf("%d%c",&b,&ch))
            {
                G[a].push_back(b);
                G[b].push_back(a);
                if(ch == '\n')
                    break;
            }
        }
        solve();
    }
    return 0;
}

 
自己又写的
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
using namespace std;
#define N 110
#define min(a, b) a<b?a:b
int n, father[N];
int visit[N], rode[N];
int rootson, ans, t, inter[N];
vector<vector<int> >G;
void Init()
{
G.clear();
G.resize(n+1);
rootson=0;
ans=0;
t=0;
memset(inter, 0, sizeof(inter));
memset(visit, 0, sizeof(visit));
memset(rode, 0, sizeof(rode));
memset(father, 0, sizeof(father));
}
void Tarjan(int u, int fu)
{
visit[u]=rode[u]=++t;
father[u]=fu;
int len=G[u].size(); for(int i=0; i<len; i++)
{
int v=G[u][i];
if(!visit[v])
{
Tarjan(v, u);
rode[u]=min(rode[u], rode[v]);
}
else if(v!=fu)
{
rode[u]=min(visit[v], rode[u]);
}
}
}
void solve()
{
Tarjan(1, 0);
for(int i=2; i<=n; i++)
{
int v=father[i];
if(v==1)
rootson++;
else if(visit[v]<=rode[i])//这一点可能不理解吧
inter[v]=1;
}
for(int i=2; i<=n; i++)
{
if(inter[i])
ans++;
}
if(rootson>1)
ans++;
printf("%d\n", ans);
}
int main()
{
while(scanf("%d", &n), n)
{
Init();
int a, b;
char ch;
while(scanf("%d", &a), a)
{
while(scanf("%d%c", &b, &ch)!=EOF)
{
G[a].push_back(b);
G[b].push_back(a);
if(ch=='\n')
break;
}
}
solve();
}
return 0;
}

POJ 1144 无向图求割点的更多相关文章

  1. UVA 315 Network (模板题)(无向图求割点)

    <题目链接> 题目大意: 给出一个无向图,求出其中的割点数量. 解题分析: 无向图求割点模板题. 一个顶点u是割点,当且仅当满足 (1) u为树根,且u有多于一个子树. (2) u不为树根 ...

  2. poj 1144 Network 无向图求割点

    Network Description A Telephone Line Company (TLC) is establishing a new telephone cable network. Th ...

  3. poj 1523"SPF"(无向图求割点)

    传送门 题意: 有一张联通网络,求出所有的割点: 对于割点 u ,求将 u 删去后,此图有多少个联通子网络: 对于含有割点的,按升序输出: 题解: DFS求割点入门题,不会的戳这里

  4. (连通图 模板题 无向图求割点)Network --UVA--315(POJ--1144)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  5. uva 315 Network(无向图求割点)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  6. 无向图求割点 UVA 315 Network

    输入数据处理正确其余的就是套强联通的模板了 #include <iostream> #include <cstdlib> #include <cstdio> #in ...

  7. POJ 1523 SPF 求割点的好(板子)题!

    题意: 给个无向图,问有多少个割点,对于每个割点求删除这个点之后会产生多少新的点双联通分量 题还是很果的 怎么求割点请参考tarjan无向图 关于能产生几个新的双联通分量,对于每个节点u来说,我们判断 ...

  8. B - Network---UVA 315(无向图求割点)

        A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connectin ...

  9. poj 1523 SPF 无向图求割点

    SPF Description Consider the two networks shown below. Assuming that data moves around these network ...

随机推荐

  1. android JNI常用添加log方法

    android JNI 打log方法 添加库支持 LOCAL_LDLIBS :=-llog -landroid 包含头文件 #include <android/log.h> #define ...

  2. Android-NDK编译:cocos2d-x

    看了下 cocos2d-x 3.0 alpha1 几个关于android的脚本 cocos2d-x\tools\project-creator\create_project.py cocos2d-x\ ...

  3. 【spring boot logback】spring boot中logback日志乱码问题

    在初次使用logback的自定义配置文件完整的控制spring boot日志后,发现了一个无法忍受的问题,就是日志乱码. 控制台看到打印日志乱码如下: 而日志文件打开: 记事本打开 sublime打开 ...

  4. [Spring Data MongoDB]学习笔记--建立数据库的连接

    1. 有了上一篇的Mongo后,连接数据库我们还需要更多的信息,比如数据库名字,用户名和密码等. 我们可以继续来配置MongoDbFactory的实例. public interface MongoD ...

  5. 【BZOJ2140】稳定婚姻 Tarjan

    [BZOJ2140]稳定婚姻 Description 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. ...

  6. 深入C#学习系列一:序列化(Serialize)、反序列化(Deserialize)(转)

    序列化又称串行化,是.NET运行时环境用来支持用户定义类型的流化的机制.其目的是以某种存储形成使自定义对象持久化,或者将这种对象从一个地方传输到另一个地方.    .NET框架提供了两种串行化的方式: ...

  7. 阿里云 如何减少备份使用量? mysql数据库的完整备份、差异备份、增量备份

    RDS for MySQL备份.SQL审计容量相关问题_MYSQL使用_技术运维问题_云数据库 RDS 版-阿里云 https://help.aliyun.com/knowledge_detail/4 ...

  8. box-shadow阴影效果

    .shadowBox{ -moz-box-shadow:5px 5px 5px #A9A9A9; -webkit-box-shadow:5px 5px 5px #A9A9A9; box-shadow: ...

  9. Centos简介(一)

    Centos作为主流的一种Linux操作系统,我们选用Centos,主要是免费,以及稳定. Centos详细介绍,请参考 百度百科

  10. PS导出@3x、@2x、@1x格式的iOS切图神器-Retinize

    Retinize动作下载地址:http://retinize.it/ 使用:ps-载入动作-选中图片-执行动作