POJ 1144 无向图求割点
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
#define maxn 10005
int dfn[maxn];///代表最先遍历到这个点的时间
int low[maxn];///这个点所能到达之前最早的时间点
int Father[maxn];///保存这个节点的父亲节点
int n, m, Time, top;///Time 时间点, top用于栈操作
vector<vector<int> > G;
void Init()
{
G.clear();
G.resize(n+1);
memset(low, 0, sizeof(low));
memset(dfn, 0, sizeof(dfn));
memset(Father, 0, sizeof(Father));
Time = 0;
}
void Tarjan(int u,int fa)
{
low[u] = dfn[u] = ++Time;
Father[u] = fa;
int len = G[u].size(), v;
for(int i=0; i<len; i++)
{
v = G[u][i];
if(!dfn[v])
{
Tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else if(fa != v)///假如我们在这里写上了 low[u] = min(low[v], low[u]),那么就相当于我们由v回到了v之前的节点
low[u] = min(dfn[v], low[u]);
}
}
void solve()
{/**
求割点
一个顶点u是割点,当且仅当满足(1)或(2)
(1) u为树根,且u有多于一个子树。
(2) u不为树根,且满足存在(u,v)为树枝边(或称 父子边,即u为v在搜索树中的父亲),使得 dfn(u)<=low(v)。
(也就是说 V 没办法绕过 u 点到达比 u dfn要小的点)
注:这里所说的树是指,DFS下的搜索树*/
int RootSon = 0, ans = 0;///根节点儿子的数量
bool Cut[maxn] = {false};///标记数组,判断这个点是否是割点
Tarjan(1,0);
for(int i=2; i<=n; i++)
{
int v = Father[i];
if(v == 1)///也是就说 i的父亲是根节点
RootSon ++;
else if(dfn[v] <= low[i])
Cut[v] = true;
}
for(int i=2; i<=n; i++)
{
if(Cut[i])
ans ++;
}
if(RootSon > 1)
ans++;
printf("%d\n", ans);
}
int main()
{
while(scanf("%d", &n), n)
{
int a, b;
char ch;
Init();
while(scanf("%d", &a), a)
{
while(scanf("%d%c",&b,&ch))
{
G[a].push_back(b);
G[b].push_back(a);
if(ch == '\n')
break;
}
}
solve();
}
return 0;
}
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
using namespace std;
#define N 110
#define min(a, b) a<b?a:b
int n, father[N];
int visit[N], rode[N];
int rootson, ans, t, inter[N];
vector<vector<int> >G;
void Init()
{
G.clear();
G.resize(n+1);
rootson=0;
ans=0;
t=0;
memset(inter, 0, sizeof(inter));
memset(visit, 0, sizeof(visit));
memset(rode, 0, sizeof(rode));
memset(father, 0, sizeof(father));
}
void Tarjan(int u, int fu)
{
visit[u]=rode[u]=++t;
father[u]=fu;
int len=G[u].size(); for(int i=0; i<len; i++)
{
int v=G[u][i];
if(!visit[v])
{
Tarjan(v, u);
rode[u]=min(rode[u], rode[v]);
}
else if(v!=fu)
{
rode[u]=min(visit[v], rode[u]);
}
}
}
void solve()
{
Tarjan(1, 0);
for(int i=2; i<=n; i++)
{
int v=father[i];
if(v==1)
rootson++;
else if(visit[v]<=rode[i])//这一点可能不理解吧
inter[v]=1;
}
for(int i=2; i<=n; i++)
{
if(inter[i])
ans++;
}
if(rootson>1)
ans++;
printf("%d\n", ans);
}
int main()
{
while(scanf("%d", &n), n)
{
Init();
int a, b;
char ch;
while(scanf("%d", &a), a)
{
while(scanf("%d%c", &b, &ch)!=EOF)
{
G[a].push_back(b);
G[b].push_back(a);
if(ch=='\n')
break;
}
}
solve();
}
return 0;
}
POJ 1144 无向图求割点的更多相关文章
- UVA 315 Network (模板题)(无向图求割点)
<题目链接> 题目大意: 给出一个无向图,求出其中的割点数量. 解题分析: 无向图求割点模板题. 一个顶点u是割点,当且仅当满足 (1) u为树根,且u有多于一个子树. (2) u不为树根 ...
- poj 1144 Network 无向图求割点
Network Description A Telephone Line Company (TLC) is establishing a new telephone cable network. Th ...
- poj 1523"SPF"(无向图求割点)
传送门 题意: 有一张联通网络,求出所有的割点: 对于割点 u ,求将 u 删去后,此图有多少个联通子网络: 对于含有割点的,按升序输出: 题解: DFS求割点入门题,不会的戳这里
- (连通图 模板题 无向图求割点)Network --UVA--315(POJ--1144)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- uva 315 Network(无向图求割点)
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- 无向图求割点 UVA 315 Network
输入数据处理正确其余的就是套强联通的模板了 #include <iostream> #include <cstdlib> #include <cstdio> #in ...
- POJ 1523 SPF 求割点的好(板子)题!
题意: 给个无向图,问有多少个割点,对于每个割点求删除这个点之后会产生多少新的点双联通分量 题还是很果的 怎么求割点请参考tarjan无向图 关于能产生几个新的双联通分量,对于每个节点u来说,我们判断 ...
- B - Network---UVA 315(无向图求割点)
A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connectin ...
- poj 1523 SPF 无向图求割点
SPF Description Consider the two networks shown below. Assuming that data moves around these network ...
随机推荐
- android JNI常用添加log方法
android JNI 打log方法 添加库支持 LOCAL_LDLIBS :=-llog -landroid 包含头文件 #include <android/log.h> #define ...
- Android-NDK编译:cocos2d-x
看了下 cocos2d-x 3.0 alpha1 几个关于android的脚本 cocos2d-x\tools\project-creator\create_project.py cocos2d-x\ ...
- 【spring boot logback】spring boot中logback日志乱码问题
在初次使用logback的自定义配置文件完整的控制spring boot日志后,发现了一个无法忍受的问题,就是日志乱码. 控制台看到打印日志乱码如下: 而日志文件打开: 记事本打开 sublime打开 ...
- [Spring Data MongoDB]学习笔记--建立数据库的连接
1. 有了上一篇的Mongo后,连接数据库我们还需要更多的信息,比如数据库名字,用户名和密码等. 我们可以继续来配置MongoDbFactory的实例. public interface MongoD ...
- 【BZOJ2140】稳定婚姻 Tarjan
[BZOJ2140]稳定婚姻 Description 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. ...
- 深入C#学习系列一:序列化(Serialize)、反序列化(Deserialize)(转)
序列化又称串行化,是.NET运行时环境用来支持用户定义类型的流化的机制.其目的是以某种存储形成使自定义对象持久化,或者将这种对象从一个地方传输到另一个地方. .NET框架提供了两种串行化的方式: ...
- 阿里云 如何减少备份使用量? mysql数据库的完整备份、差异备份、增量备份
RDS for MySQL备份.SQL审计容量相关问题_MYSQL使用_技术运维问题_云数据库 RDS 版-阿里云 https://help.aliyun.com/knowledge_detail/4 ...
- box-shadow阴影效果
.shadowBox{ -moz-box-shadow:5px 5px 5px #A9A9A9; -webkit-box-shadow:5px 5px 5px #A9A9A9; box-shadow: ...
- Centos简介(一)
Centos作为主流的一种Linux操作系统,我们选用Centos,主要是免费,以及稳定. Centos详细介绍,请参考 百度百科
- PS导出@3x、@2x、@1x格式的iOS切图神器-Retinize
Retinize动作下载地址:http://retinize.it/ 使用:ps-载入动作-选中图片-执行动作