学长写的:
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
#define maxn 10005
int dfn[maxn];///代表最先遍历到这个点的时间
int low[maxn];///这个点所能到达之前最早的时间点
int Father[maxn];///保存这个节点的父亲节点
int n, m, Time, top;///Time 时间点,  top用于栈操作
vector<vector<int> > G;

void Init()
{
    G.clear();
    G.resize(n+1);
    memset(low, 0, sizeof(low));
    memset(dfn, 0, sizeof(dfn));
    memset(Father, 0, sizeof(Father));
    Time = 0;
}

void Tarjan(int u,int fa)
{
    low[u] = dfn[u] = ++Time;
    Father[u] = fa;
    int len = G[u].size(), v;

for(int i=0; i<len; i++)
    {
        v = G[u][i];

if(!dfn[v])
        {
            Tarjan(v, u);
            low[u] = min(low[u], low[v]);
        }
        else if(fa != v)///假如我们在这里写上了 low[u] = min(low[v], low[u]),那么就相当于我们由v回到了v之前的节点
            low[u] = min(dfn[v], low[u]);
    }
}
void solve()
{/**
求割点
一个顶点u是割点,当且仅当满足(1)或(2)
(1) u为树根,且u有多于一个子树。
(2) u不为树根,且满足存在(u,v)为树枝边(或称 父子边,即u为v在搜索树中的父亲),使得 dfn(u)<=low(v)。
(也就是说 V 没办法绕过 u 点到达比 u dfn要小的点)
注:这里所说的树是指,DFS下的搜索树*/
    int RootSon = 0, ans = 0;///根节点儿子的数量
    bool Cut[maxn] = {false};///标记数组,判断这个点是否是割点

Tarjan(1,0);

for(int i=2; i<=n; i++)
    {
        int v = Father[i];
        if(v == 1)///也是就说 i的父亲是根节点
            RootSon ++;
        else if(dfn[v] <= low[i])
            Cut[v] = true;
    }

for(int i=2; i<=n; i++)
    {
        if(Cut[i])
            ans ++;
    }
    if(RootSon > 1)
        ans++;

printf("%d\n", ans);
}
int main()
{
    while(scanf("%d", &n), n)
    {
        int a, b;
        char ch;
        Init();
        while(scanf("%d", &a), a)
        {
            while(scanf("%d%c",&b,&ch))
            {
                G[a].push_back(b);
                G[b].push_back(a);
                if(ch == '\n')
                    break;
            }
        }
        solve();
    }
    return 0;
}

 
自己又写的
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
using namespace std;
#define N 110
#define min(a, b) a<b?a:b
int n, father[N];
int visit[N], rode[N];
int rootson, ans, t, inter[N];
vector<vector<int> >G;
void Init()
{
G.clear();
G.resize(n+1);
rootson=0;
ans=0;
t=0;
memset(inter, 0, sizeof(inter));
memset(visit, 0, sizeof(visit));
memset(rode, 0, sizeof(rode));
memset(father, 0, sizeof(father));
}
void Tarjan(int u, int fu)
{
visit[u]=rode[u]=++t;
father[u]=fu;
int len=G[u].size(); for(int i=0; i<len; i++)
{
int v=G[u][i];
if(!visit[v])
{
Tarjan(v, u);
rode[u]=min(rode[u], rode[v]);
}
else if(v!=fu)
{
rode[u]=min(visit[v], rode[u]);
}
}
}
void solve()
{
Tarjan(1, 0);
for(int i=2; i<=n; i++)
{
int v=father[i];
if(v==1)
rootson++;
else if(visit[v]<=rode[i])//这一点可能不理解吧
inter[v]=1;
}
for(int i=2; i<=n; i++)
{
if(inter[i])
ans++;
}
if(rootson>1)
ans++;
printf("%d\n", ans);
}
int main()
{
while(scanf("%d", &n), n)
{
Init();
int a, b;
char ch;
while(scanf("%d", &a), a)
{
while(scanf("%d%c", &b, &ch)!=EOF)
{
G[a].push_back(b);
G[b].push_back(a);
if(ch=='\n')
break;
}
}
solve();
}
return 0;
}

POJ 1144 无向图求割点的更多相关文章

  1. UVA 315 Network (模板题)(无向图求割点)

    <题目链接> 题目大意: 给出一个无向图,求出其中的割点数量. 解题分析: 无向图求割点模板题. 一个顶点u是割点,当且仅当满足 (1) u为树根,且u有多于一个子树. (2) u不为树根 ...

  2. poj 1144 Network 无向图求割点

    Network Description A Telephone Line Company (TLC) is establishing a new telephone cable network. Th ...

  3. poj 1523"SPF"(无向图求割点)

    传送门 题意: 有一张联通网络,求出所有的割点: 对于割点 u ,求将 u 删去后,此图有多少个联通子网络: 对于含有割点的,按升序输出: 题解: DFS求割点入门题,不会的戳这里

  4. (连通图 模板题 无向图求割点)Network --UVA--315(POJ--1144)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  5. uva 315 Network(无向图求割点)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  6. 无向图求割点 UVA 315 Network

    输入数据处理正确其余的就是套强联通的模板了 #include <iostream> #include <cstdlib> #include <cstdio> #in ...

  7. POJ 1523 SPF 求割点的好(板子)题!

    题意: 给个无向图,问有多少个割点,对于每个割点求删除这个点之后会产生多少新的点双联通分量 题还是很果的 怎么求割点请参考tarjan无向图 关于能产生几个新的双联通分量,对于每个节点u来说,我们判断 ...

  8. B - Network---UVA 315(无向图求割点)

        A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connectin ...

  9. poj 1523 SPF 无向图求割点

    SPF Description Consider the two networks shown below. Assuming that data moves around these network ...

随机推荐

  1. 转载:给bash的提示符设置不同的颜色 一个很常用的功能,效果如下:

    原文来自:http://www.cnblogs.com/cyttina/archive/2013/01/08/2850406.html 一个很常用的功能,效果如下: 这样就可以很轻易的将输入的指令和其 ...

  2. ajax的适用场景

    1.适用:基本所有的网站都有涉及到. 2.典型使用场景: 动态加载数据,按照需要取数据 改善用户体验 电子商务应用 访问第三方服务 数据局部刷新

  3. go反射----3方法

    声明:文章内容取自雨痕老师<Go语言学习笔记> 动态调用方法,谈不上有多麻烦.只需按IN列表准备好所需参数即可. package main import ( "fmt" ...

  4. JDK的命令具体解释操作

    JDK的命令具体解释1 rmic 功能说明: rmic 为远程对象生成 stub 和 skeleton. 语法: rmic [ options ] package-qualified-class-na ...

  5. [转]JBOSS4.3关于java.lang.OutOfMemoryError: PermGen space解决方法

    vi /jboss/bin/run.bat 找到: set JAVA_OPTS=%JAVA_OPTS% -Xms128m -Xmx512m -XX:MaxPermSize=256m 改为: set J ...

  6. 【BZOJ4825】[Hnoi2017]单旋 线段树+set

    [BZOJ4825][Hnoi2017]单旋 Description H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据结构,因为代码好写,功能 ...

  7. 1714 B君的游戏(Nim博弈)

    1714 B君的游戏 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 B君和L君要玩一个游戏.刚开始有n个正整数  ai  . 双方轮流操作.每次操作,选一个正整数 ...

  8. FlaskWeb开发

    Flask基本使用 上下文 程序上下文 current_app g 请求上下文 request session https://blog.csdn.net/wsxqaz/article/details ...

  9. RabbitMQ安装篇

    一切不是自己实战,且跑不起来的程序都是在耍流氓! 先下载: http://www.erlang.org/downloads     erlang 包

  10. <2013 07 29> 游泳

    7月12日,在巴塞罗那的海滩学会用狗刨式游泳. 7月14日,在尼斯-戛纳海滩继续练习,稍式蛙泳仰泳. 7月28日,在慕尼黑某湖边吃烧烤,下湖练习. 7月29日,在慕尼黑奥林匹克游泳馆学会了仰泳,稍试自 ...