题目链接

容易发现,当加一条边时,树上会形成一个环,这个环上的每个点都是只要走一次的,也就是说我们的答案减少了这个环上点的个数,要使答案最小,即要使环上的点最多,求出直径\(L\),则答案为\(2(n-1)-L+1\)。

当加两条边时,同样会形成一个新环,但这个新环可能和第一个环有交点,而这些交点仍是要走两次的,所以我们要让交点的个数尽可能小,所以,把原直径上的所有边权取反,代表若取了这条边,答案会增大那么多,然后再求一次树的直径\(L_1\),则答案为\(2(n-1)-L+1-L_1+1=2n-L-L_1\)。

注意,第二次求直径不能用两边\(DFS/BFS\)来求,因为树中有负权边,直接跑答案显然是错的,所以我们要用树形\(DP\)求直径。

#include <cstdio>
const int MAXN = 5000010;
namespace IO{
inline int read(){
int s = 0, w = 1;
char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') w = -1; ch = getchar(); }
while(ch >= '0' && ch <= '9') { s = s * 10 + ch - '0'; ch = getchar(); }
return s * w;
}
}using namespace IO;
namespace G{
struct Edge{
int next, to, dis;
}e[MAXN << 1];
int head[MAXN], num;
inline void Add(int from, int to, int dis){
e[++num].to = to;
e[num].dis = dis;
e[num].next = head[from];
head[from] = num;
}
}using namespace G;
int n, k, s, t;
int a, b;
int pre[MAXN];
int Max = 0;
inline int max(int a, int b){
return a > b ? a : b;
}
void dfs(int u, int fa, int dep){
if(dep > Max && fa) s = u, Max = dep;
for(int i = head[u]; i; i = e[i].next)
if(e[i].to != fa)
dfs(e[i].to, u, dep + e[i].dis);
}
void DFS(int u, int fa, int dep){
if(dep > Max) t = u, Max = dep;
for(int i = head[u]; i; i = e[i].next)
if(e[i].to != fa)
pre[e[i].to] = u, DFS(e[i].to, u, dep + e[i].dis);
}
int d[MAXN], ans = -2147483647;
void dp(int u, int fa){
for(int i = head[u]; i; i = e[i].next)
if(e[i].to != fa){
dp(e[i].to, u);
ans = max(ans, d[u] + d[e[i].to] + e[i].dis);
d[u] = max(d[u], d[e[i].to] + e[i].dis);
}
}
int main(){
n = read(); k = read();
for(int i = 1; i < n; ++i){
a = read(); b = read();
Add(a, b, 1); Add(b, a, 1);
}
Max = -2147483647; dfs(1, 0, 0);
Max = -2147483647; DFS(s, 0, 0);
if(k == 1){
printf("%d\n", (n << 1) - 1 - Max);
return 0;
}
int now = t;
while(now != s){
for(int i = head[now]; i; i = e[i].next)
if(e[i].to == pre[now]){
e[i].dis = -1;
break;
}
now = pre[now];
}
dp(t, 0);
printf("%d\n", (n << 1) - Max - ans);
return 0;
}

【洛谷 P3629】 [APIO2010]巡逻 (树的直径)的更多相关文章

  1. 洛谷 P3629 [APIO2010]巡逻 解题报告

    P3629 [APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通 ...

  2. 洛谷P3629 [APIO2010]巡逻(树的直径)

    如果考虑不算上新修的道路,那么答案显然为\(2*(n-1)\). 考虑\(k=1\)的情况,会发现如果我们新修建一个道路,那么就会有一段路程少走一遍.这时选择连接树的直径的两个端点显然是最优的. 难就 ...

  3. [洛谷P3629] [APIO2010]巡逻

    洛谷题目链接:[APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以 ...

  4. 洛谷 P3629 [APIO2010]巡逻

    题目在这里 这是一个紫题,当然很难. 我们往简单的想,不建立新的道路时,从1号节点出发,把整棵树上的每条边遍历至少一次,再回到1号节点,会恰好经过每条边两次,路线总长度为$2(n-1)$,根据树的深度 ...

  5. BZOJ1912或洛谷3629 [APIO2010]巡逻

    一道树的直径 BZOJ原题链接 洛谷原题链接 显然在原图上路线的总长为\(2(n-1)\). 添加第一条边时,显然会形成一个环,而这条环上的所有边全部只需要走一遍.所以为了使添加的边的贡献最大化,我们 ...

  6. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  7. 【BZOJ2830/洛谷3830】随机树(动态规划)

    [BZOJ2830/洛谷3830]随机树(动态规划) 题面 洛谷 题解 先考虑第一问. 第一问的答案显然就是所有情况下所有点的深度的平均数. 考虑新加入的两个点,一定会删去某个叶子,然后新加入两个深度 ...

  8. 树的直径初探+Luogu P3629 [APIO2010]巡逻【树的直径】By cellur925

    题目传送门 我们先来介绍一个概念:树的直径. 树的直径:树中最远的两个节点间的距离.(树的最长链)树的直径有两种方法,都是$O(N)$. 第一种:两遍bfs/dfs(这里写的是两遍bfs) 从任意一个 ...

  9. 洛谷 [P3629] 巡逻

    树的直径 树的直径有两种求法 1.两遍 dfs 法, 便于输出具体方案,但是无法处理负权边 2.DP 法,代码量少,可以处理负权边 #include <iostream> #include ...

随机推荐

  1. iOS中的数据库应用

    iOS中的数据库应用 SLQLite简介 什么是SQLite SQLite是一款轻型的嵌入式数据库 它占用资源非常的低,在嵌入式设备中,可能只需要几百K的内存就够了 它的处理速度比Mysql.Post ...

  2. inline-block 空隙

    IE8-9.Firefox.Safari 是4px Chrome下是8px 出现原因 标签换行引起 解决方案网上很多 但是在布局中尽量避免使用inline-block

  3. Qt Creater 制作汽车仪表盘

    最近项目用到了模拟仪表,网上下载大神编写的按个仪表Meter没有成功 转战 QWt 编译后,在creater中仍然无法使用,只可以在代码中使用 百度说是我编译的版本不对 扔到 开始做自己的 这个用到了 ...

  4. fiddler显示出服务器IP方法

    fiddler的配置中是看不到服务器的IP的 1.打开进入fiddler界面,按快捷键ctrl+r 或者按照图中点击,进入customrules.js文件里. 2.在customrules.js文件里 ...

  5. String 将GBK转UTF-8

    public void transfer(String xml) throws Exception { return new String(xml.getBytes("gbk"), ...

  6. [PocketFlow]解决在coco上mAP非常低的bug

    1.问题 继上次训练挂起的bug后,又遇到了现在评估时AP非常低的bug.具体有多低呢?Pelee论文中提到,用128的batchsize大小在coco数据集上训练70K次迭代后,AP@0.5:0.9 ...

  7. C++ 中神奇的头文件,懒人专用

    今天在做题的时候,偶然发现了一种神奇头文件.他的使用方法以及内容如下: #include <bits/stdc++.h> // C++ includes used for precompi ...

  8. 解决hadoop no dataNode to stop问题

    错误原因: datanode的clusterID 和 namenode的 clusterID 不匹配. 解决办法: 1. 打开 hadoop/tmp/dfs/namenode/name/dir 配置对 ...

  9. LTE 中基于X2的切换

    LTE 中基于X2的切换 (36.300, 23.401)SGW  保持不变 http://blog.sina.com.cn/s/blog_673b30dd0100j4pe.html   1:eNod ...

  10. Mybatis学习系列(三)动态SQL

    在mapper配置文件中,有时需要根据查询条件选择不同的SQL语句,或者将一些使用频率高的SQL语句单独配置,在需要使用的地方引用.Mybatis的一个特性:动态SQL,来解决这个问题. mybati ...