洛谷P4721 【模板】分治 FFT(分治FFT)
多项式求逆的解法看这里
我们考虑用分治
假设现在已经求出了$[l,mid]$的答案,要计算他们对$[mid+1,r]$的答案的影响
那么对右边部分的点$f_x$的影响就是$f_x+=\sum_{i=l}^{mid}f[i]g[x-i]$
发现右边那个东西可以用卷积快速计算
那么只要一边分治一边跑FFT统计贡献就行了
说是分治FFT实际上代码里写的是NTT……
而且分治FFT跑得好慢多项式求逆的速度是它的10倍啊……
//minamoto
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define swap(x,y) (x^=y,y^=x,x^=y)
#define mul(x,y) (1ll*x*y%P)
#define add(x,y) (x+y>=P?x+y-P:x+y)
#define dec(x,y) (x-y<0?x-y+P:x-y)
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char sr[<<],z[];int C=-,Z;
inline void Ot(){fwrite(sr,,C+,stdout),C=-;}
inline void print(int x){
if(C><<)Ot();if(x<)sr[++C]=,x=-x;
while(z[++Z]=x%+,x/=);
while(sr[++C]=z[Z],--Z);sr[++C]=' ';
}
const int N=,P=;
inline int ksm(int a,int b){
int res=;
while(b){
if(b&) res=mul(res,a);
a=mul(a,a),b>>=;
}
return res;
}
int n,r[N],g[N],f[N],A[N],B[N],O[N],limit,l;
inline void init(int len){
limit=,l=;
while(limit<len*) limit<<=,++l;
for(int i=;i<limit;++i)
r[i]=(r[i>>]>>)|((i&)<<(l-));
}
void NTT(int *A,int type){
for(int i=;i<limit;++i)
if(i<r[i]) swap(A[i],A[r[i]]);
for(int mid=;mid<limit;mid<<=){
int R=mid<<,Wn=ksm(,(P-)/R);O[]=;
for(int j=;j<mid;++j) O[j]=mul(O[j-],Wn);
for(int j=;j<limit;j+=R){
for(int k=;k<mid;++k){
int x=A[j+k],y=mul(O[k],A[j+k+mid]);
A[j+k]=add(x,y),A[j+k+mid]=dec(x,y);
}
}
}
if(type==-){
reverse(A+,A+limit);
for(int i=,inv=ksm(limit,P-);i<limit;++i)
A[i]=mul(A[i],inv);
}
}
void CDQ(int *a,int *b,int l,int r){
if(l==r) return;
int mid=(l+r)>>;CDQ(a,b,l,mid);
init(r-l+);
for(int i=;i<limit;++i) A[i]=B[i]=;
for(int i=l;i<=mid;++i) A[i-l]=a[i];
for(int i=;i<=r-l;++i) B[i]=b[i];
NTT(A,),NTT(B,);
for(int i=;i<limit;++i) A[i]=mul(A[i],B[i]);
NTT(A,-);
for(int i=mid+;i<=r;++i) a[i]=add(a[i],A[i-l]);
CDQ(a,b,mid+,r);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read();
for(int i=;i<n;++i) g[i]=read();f[]=;
CDQ(f,g,,n-);
for(int i=;i<n;++i) print(f[i]);
Ot();
return ;
}
洛谷P4721 【模板】分治 FFT(分治FFT)的更多相关文章
- 洛谷 P4721 [模板]分治FFT —— 分治FFT / 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以 ...
- [洛谷P3806] [模板] 点分治1
洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果m ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷.1919.[模板]A*B Problem升级版(FFT)
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷 P4245 [模板]任意模数NTT —— 三模数NTT / 拆系数FFT(MTT)
题目:https://www.luogu.org/problemnew/show/P4245 用三模数NTT做,需要注意时间和细节: 注意各种地方要取模!传入 upt() 里面的数一定要不超过2倍 m ...
- 洛谷P3810 陌上花开(CDQ分治)
洛谷P3810 陌上花开 传送门 题解: CDQ分治模板题. 一维排序,二维归并,三维树状数组. 核心思想是分治,即计算左边区间对右边区间的影响. 代码如下: #include <bits/st ...
- 洛谷SP22343 NORMA2 - Norma(分治,前缀和)
洛谷题目传送门 这题推式子恶心..... 考虑分治,每次统计跨过\(mid\)的所有区间的答案和.\(i\)从\(mid-1\)到\(l\)枚举,统计以\(i\)为左端点的所有区间. 我们先维护好\( ...
- Poj1741/洛谷P4718 Tree(点分治)
题面 有多组数据:Poj 无多组数据:洛谷 题解 点分治板子题,\(calc\)的时候搞一个\(two\ pointers\)扫一下统计答案就行了. #include <cmath> #i ...
随机推荐
- qt5.4.1的imx6编译
2.到https://download.qt.io/archive/qt/5.4/5.4.1/single/下载源码包qt-everywhere-opensource-src-5.4.1.tar.gz ...
- MySql 5.7 详细参数说明
max_connections: 允许客户端并发连接的最大数量,默认值是151,一般将该参数设置为500-2000 max_connect_errors: 如果客户端尝试连接的错误数量超过这个参数设置 ...
- nodejs模块Phantom,无界面浏览器
PhantomJS 是一个无界面的 webkit 内核浏览器,
- INSPIRED启示录 读书笔记 - 第11章 评估产品机会
市场需求文档 大多数的公司产品选择权是由高管.市场部门.开发团队甚至是大客户,在这种情况下公司会跳过市场需求文档或是误写成产品规范文档,回避评估产品机会 在正常情况下,应该是由业务人员会撰写一份论证产 ...
- DP问题分类总结
http://m.blog.csdn.net/y990041769/article/details/24194605 此博客总结了动态规划相关问题,学习一下!
- POJ 2431 贪心+优先队列
题意:一辆卡车距离重点L,现有油量P,卡车每前行1米耗费油量1,途中有一些加油站,问最少在几个加油站加油可使卡车到达终点或到达不了终点. 思路:运用优先队列,将能走到的加油站的油量加入优先队列中, ...
- java resources 红叉 Cannot change version of project facet Dynamic Web Module to 2.5
在使用maven导入项目的时候,markers提示Cannot change version of project facet Dynamic Web Module to 2.5,不能将工程转换为2. ...
- 一言(ヒトコト)Hitokoto API
『想要成为无论多么悲伤的时候,也能够漂亮微笑的人吧.』 Hitokoto API 更新:2014.02.22 问题/反馈:api # hitokoto.us 数据获取:[ 数据获取 ] 调用举例:[ ...
- ZooKeeper-安装和运行
ZooKeeper安装和运行 1. 下载安装包 zookeeper-3.4.9.tar.gz 2. 解压 tar -zxvf zookeeper-3.4.9.tar.gz ZooKeeper提供了几个 ...
- hzau 1199 Little Red Riding Hood
1199: Little Red Riding Hood Time Limit: 1 Sec Memory Limit: 1280 MBSubmit: 918 Solved: 158[Submit ...