我们经常会遇到生产者消费者模式,比如前端各种UI操作事件触发后台逻辑等。在这种典型的应用场景中,我们可能会有4个业务处理逻辑(下文以P代表生产者,C代表消费者):
1. FIFO(先进先出)
P产生1,2,3,4,5,6,3,2
C处理顺序应为1,2,3,4,5,6,3,2
2.LIFO(后进先出)
P产生1,2,3,4,5,6,3,2
C处理顺序应为2,3,6,5,4,3,2,1
3.Dynamic FIFO(我定义为:去掉相同数据的FIFO, 如果产生的数据队列里已经有相同数据,后进的数据优先级高)
P产生1,2,3,4,5,6,3,2
C处理顺序为1,4,5,6,3,2
4.Dynamic LIFO(我定义为:去掉相同数据的LIFO, 如果产生的数据栈里已经有相同数据,后进的数据优先级高)
P产生1,2,3,4,5,6,3,2
C处理顺序为2,3,6,5,4,1
1,2情况为基本处理逻辑,3,4可能和我们实际场景有关系(包括:判断相同的逻辑可能不同、已存在和后续数据哪个优先级高)
定义上述4种场景的通用接口以及其遍历类
public interface IScheduler : IEnumerable<Task >
{
void Add (Task t);
void Remove (Task t);
int Count { get; }
Task this [int index] { get; set ; }
}
public class SchedulerEnumerator : IEnumerator< Task>
{
private IScheduler _collection;
private int _currentIndex;
private Task _currentTask;
public SchedulerEnumerator (IScheduler collection)
{
_collection = collection ;
_currentIndex = -1;
_currentTask = default (Task);
}
public bool MoveNext()
{
//Avoids going beyond the end of the collection.
if (++_currentIndex >= _collection. Count)
{
return false ;
}
else
{
// Set current box to next item in collection.
_currentTask = _collection [_currentIndex];
}
return true ;
}
public void Reset() { _currentIndex = -1; }
void IDisposable .Dispose() { }
public Task Current
{
get { return _currentTask; }
}
object IEnumerator .Current
{
get { return Current; }
}
}
实现我们自己的任务调度类模板,可以通过T传递我们想要的队列类型
public class TaskSchedulerBase <T> : TaskScheduler
where T : IScheduler , new ()
{
private Thread _processThread;
private readonly object _lock = new object ();
public TaskSchedulerBase()
{
_processThread = new Thread (this.Process);
}
private void Process()
{
lock (_lock)
{
var tasks = GetScheduledTasks();
if (null != tasks)
{
foreach (var t in tasks)
{
TryExecuteTask(t);
TryDequeue(t);
}
}
}
}
protected override void QueueTask( Task task)
{
lock (_lock)
{
Scheduler.Add(task);
if (_processThread.ThreadState.Equals(ThreadState .Stopped))
{
_processThread = new Thread (Process);
}
if (!_processThread.IsAlive
&& !_processThread.ThreadState.Equals( ThreadState.Running))
{
try
{
_processThread.Start();
}
catch (System.Exception )
{
if (!_processThread.ThreadState.Equals(ThreadState .Running))
{
_processThread = new Thread (Process);
_processThread.Start();
}
}
}
}
}
protected override bool TryDequeue( Task task)
{
Scheduler.Remove(task);
return true ;
}
protected override IEnumerable< Task> GetScheduledTasks()
{
return Scheduler.ToArray();
}
protected override bool TryExecuteTaskInline( Task task, bool taskWasPreviouslyQueued)
{
if (taskWasPreviouslyQueued)
{
if (TryDequeue(task))
{
return base .TryExecuteTask(task);
}
else
{
return false ;
}
}
else
{
return base .TryExecuteTask(task);
}
}
private readonly T _scheduler = new T();
public T Scheduler
{
get
{
return _scheduler;
}
}
}
实现4种队列
1.FIFO
public class QueueScheduler : IScheduler
{
protected Queue <Task> _queue;
public QueueScheduler ()
{
_queue = new Queue< Task>();
}
public void Add( Task t )
{
if (!Contains (t))
{
_queue.Enqueue (t);
}
}
public void Remove( Task t )
{
_queue.Dequeue ();
}
public bool Contains( Task t )
{
bool found = false;
foreach (var task in _queue )
{
if (t .AsyncState != null && t .AsyncState. Equals(task .AsyncState))
{
found = true ;
break;
}
}
return found ;
}
public bool Contains( Task t , EqualityComparer< Task> comp )
{
throw new NotImplementedException();
}
public IEnumerator <Task> GetEnumerator()
{
return new SchedulerEnumerator( this);
}
IEnumerator IEnumerable .GetEnumerator()
{
return new SchedulerEnumerator( this);
}
public int Count
{
get { return _queue. Count; }
}
public Task this[ int index]
{
get { return (Task) _queue.ToArray ()[index]; }
set { _queue .ToArray()[index] = value; }
}
}
2.LIFO
public class StackScheduler : IScheduler
{
protected Stack <Task> _stack;
public StackScheduler ()
{
_stack = new Stack< Task>();
}
public void Add( Task t )
{
if (!Contains (t))
{
_stack.Push (t);
}
}
public void Remove( Task t )
{
_stack.Pop ();
}
public bool Contains( Task t )
{
bool found = false;
foreach (var task in _stack )
{
if (t .AsyncState != null && t .AsyncState. Equals(task .AsyncState))
{
found = true ;
break;
}
}
return found ;
}
public bool Contains( Task t , EqualityComparer< Task> comp )
{
throw new NotImplementedException();
}
public IEnumerator <Task> GetEnumerator()
{
return new SchedulerEnumerator( this);
}
IEnumerator IEnumerable .GetEnumerator()
{
return new SchedulerEnumerator( this);
}
public int Count
{
get { return _stack. Count; }
}
public Task this[ int index]
{
get { return (Task) _stack.ToArray ()[index]; }
set { _stack .ToArray()[index] = value; }
}
}
3.Dynamic FIFO
public class DynamicQueueScheduler : IScheduler
{
protected List <Task> _queue;
public DynamicQueueScheduler ()
{
_queue = new List< Task>();
}
public virtual void Add(Task t)
{
Task oldTask = null;
if (Contains (t, out oldTask ))
{
_queue.Remove (oldTask);
}
_queue.Add (t);
}
public virtual void Remove(Task t)
{
_queue.Remove (t);
}
public virtual bool Contains(Task t)
{
Task oldTask = null;
bool found = Contains( t, out oldTask);
return found ;
}
public virtual bool Contains(Task t, out Task oldTask)
{
bool found = false;
oldTask = null ;
foreach (var task in _queue )
{
if (t .AsyncState != null && t .AsyncState. Equals(task .AsyncState))
{
oldTask = task ;
found = true ;
break;
}
}
return found ;
}
public virtual bool Contains(Task t, EqualityComparer<Task > comp)
{
throw new NotImplementedException();
}
public IEnumerator <Task> GetEnumerator()
{
return new SchedulerEnumerator( this);
}
IEnumerator IEnumerable .GetEnumerator()
{
return new SchedulerEnumerator( this);
}
public int Count
{
get { return _queue. Count; }
}
public Task this[ int index]
{
get { return (Task) _queue[index]; }
set { _queue [index] = value; }
}
}
4.Dynamic LIFO
public class DynamicStackScheduler : IScheduler
{
protected List <Task> _queue;
public DynamicStackScheduler ()
{
_queue = new List< Task>();
}
public void Add( Task t )
{
Task oldTask = null;
if (Contains (t, out oldTask ))
{
_queue.Remove (oldTask);
}
_queue.Insert (0,t);
}
public void Remove( Task t )
{
_queue.Remove (t);
}
public bool Contains( Task t )
{
Task oldTask = null;
bool found = Contains( t, out oldTask);
return found ;
}
public bool Contains( Task t , out Task oldTask )
{
bool found = false;
oldTask = null ;
foreach (var task in _queue )
{
if (t .AsyncState != null && t .AsyncState. Equals(task .AsyncState))
{
oldTask = task ;
found = true ;
break;
}
}
return found ;
}
public bool Contains( Task t , EqualityComparer< Task> comp )
{
throw new NotImplementedException();
}
public IEnumerator <Task> GetEnumerator()
{
return new SchedulerEnumerator( this);
}
IEnumerator IEnumerable .GetEnumerator()
{
return new SchedulerEnumerator( this);
}
public int Count
{
get { return _queue. Count; }
}
public Task this[ int index]
{
get { return (Task) _queue[index]; }
set { _queue [index] = value; }
}
}
测试代码
class Program
{
static Queue <int> _queue = new Queue< int>();
//static TaskFactory _factory = new TaskFactory(new TaskSchedulerBase<QueueScheduler>());
//static TaskFactory _factory = new TaskFactory(new TaskSchedulerBase<StackScheduler>());
//static TaskFactory _factory = new TaskFactory(new TaskSchedulerBase<DynamicQueueScheduler>());
//static TaskFactory _factory = new TaskFactory(new TaskSchedulerBase<DynamicStackScheduler>());
static TaskFactory _factory = new TaskFactory (new TaskSchedulerBase<DynamicQueueScheduler >());
static void Main( string[] args )
{
var thread1 = new Thread(Producer );
var thread2 = new Thread(Consumer );
thread1.Start ();
thread2.Start ();
Console.ReadKey ();
}
static void Producer()
{
for (int i = 0; i < 7; i ++)
{
_queue.Enqueue (i);
}
_queue.Enqueue (3);
_queue.Enqueue (2);
}
static void Consumer()
{
while (true )
{
if (_queue .Count > 0)
{
foreach (var i in _queue )
{
_factory.StartNew ((s) =>
{
Console.Write ("{0} on thread {1} {2}\n", s, Thread.CurrentThread .ManagedThreadId,
DateTime.Now .ToLongTimeString());
}, i);
}
_queue.Clear ();
}
else
{
Thread.Sleep (1);
}
}
}
}
- #queue队列 #生产者消费者模型
#queue队列 #生产者消费者模型 #queue队列 #有顺序的容器 #程序解耦 #提高运行效率 #class queue.Queue(maxsize=0) #先入先出 #class queue.L ...
- 第三节: List类型的介绍、生产者消费者模式、发布订阅模式
一. List类型基础 1.介绍 它是一个双向链表,支持左进.左出.右进.右出,所以它即可以充当队列使用,也可以充当栈使用. (1). 队列:先进先出, 可以利用List左进右出,或者右进左出(Lis ...
- python2.0_s12_day9之day8遗留知识(queue队列&生产者消费者模型)
4.线程 1.语法 2.join 3.线程锁之Lock\Rlock\信号量 4.将线程变为守护进程 5.Event事件 * 6.queue队列 * 7.生产者消费者模型 4.6 queue队列 que ...
- 利用J.U.C中的lock和condition实现生产者消费者模式
package lockTest; import java.util.LinkedHashMap; import java.util.LinkedList; import java.util.conc ...
- Java多线程15:Queue、BlockingQueue以及利用BlockingQueue实现生产者/消费者模型
Queue是什么 队列,是一种数据结构.除了优先级队列和LIFO队列外,队列都是以FIFO(先进先出)的方式对各个元素进行排序的.无论使用哪种排序方式,队列的头都是调用remove()或poll()移 ...
- Python学习笔记——进阶篇【第九周】———线程、进程、协程篇(队列Queue和生产者消费者模型)
Python之路,进程.线程.协程篇 本节内容 进程.与线程区别 cpu运行原理 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Ev ...
- 【Python@Thread】queue模块-生产者消费者问题
python通过queue模块来提供线程间的通信机制,从而可以让线程分项数据. 个人感觉queue就是管程的概念 一个生产者消费者问题 from random import randint from ...
- python多线程编程-queue模块和生产者-消费者问题
摘录python核心编程 本例中演示生产者-消费者模型:商品或服务的生产者生产商品,然后将其放到类似队列的数据结构中.生产商品中的时间是不确定的,同样消费者消费商品的时间也是不确定的. 使用queue ...
- stl容器学习——queue,stack,list与string
目录 头文件 string 目录部分 1.string的定义及初始化 ① 用一个字符串给另一个字符串赋值 ②用字符串常量对字符串进行赋值 ③ 用n个相同的字符对字符串赋值 2.string的运算符及比 ...
随机推荐
- 【Head First Servlets and JSP】笔记5:HttpServletResponse resp
[HttpServletResponse resp] [由servlet处理响应] 1.一般可以用通过resp获得一个输出流(writer),然后通过输出流将HTML写入响应.例如: resp.set ...
- 关于 Java正则表达式中的Possessive数量修饰词的理解
关于 Java正则表达式中的Possessive数量修饰词的理解 正则表达式对于数量限定符如 ?, + , *, {n, m} 的匹配默认是贪婪模式,比如: a.*b 匹配 acbab 的结果是 ...
- UVA 11029 || Lightoj 1282 Leading and Trailing 数学
Leading and Trailing You are given two integers: n and k, your task is to find the most significant ...
- flsk-SQLALchemy
SQLALchemy 一.介绍 SQLALchemy是一个基于Python实现的ORM框架.该框架是建立在DB API之上,使用关系对象映射进行数据库操作 简言之便就是:将类和对象转换 ...
- 关于synchronized关键字
1.synchronized关键字的作用域有二种: 1)是某个对象实例内,synchronized aMethod(){}可以防止多个线程同时访问这个对象的synchronized方法(如果一个对象有 ...
- graphlab 安装好后的导入配置
本以为下好了的结果... 然后等个十几二十分钟... 关掉这个页面重新打开,再重新导入graphlab 貌似好了...但是,,, 发现是自己的文件放错盘了...在F盘... 然后就好啦~
- JDK与JRE及其在Eclipse中的使用
转载自:http://blog.csdn.net/gx1058742912/article/details/51033942 JDK与jRE的区别 JDK(java development kit): ...
- SARG
SARG (Searchable Arguments)操作,因为它通常是指一个特定的匹配,一个值得范围内的匹配或者两个以上条件的AND连接. 中文名 SARG 全 称 Searchable ...
- EF-局部更新
// ////1 public Task ReservedQuantity(long productId, long skuId, int reservedQuantity, long userId) ...
- 编写高质量代码——html、css、javascript
[编写高质量代码]1.注释的必要性:增加代码的可读性.2.web标准:由一系列的标准组合而成,其核心理念是将网页的结构.样式.行为分离,所以他可分为:结构标准.样式标准和行为标准.3.一个符合标准的网 ...