【bzoj2763】[JLOI2011]飞行路线 (分层图最短路)(优先队列dij)
【bzoj2763】[JLOI2011]飞行路线
Description
Input
Output
Sample Input
0 4
0 1 5
1 2 5
2 3 5
3 4 5
2 3 3
0 2 100
Sample Output
HINT
对于30%的数据,2<=n<=50,1<=m<=300,k=0;
对于50%的数据,2<=n<=600,1<=m<=6000,0<=k<=1;
对于100%的数据,2<=n<=10000,1<=m<=50000,0<=k<=10.
【分析】这是一个分层图最短路的题。题中说对于最短路,其中有k条边可以免费,那么我们就建k层图。对于当前节点,我可以在本层跑,我也可以往上一层,即该条边免费,前提是已经免费的边的条数<k。则用dij即可。
#include <cstdio>
#include <map>
#include <algorithm>
#include <vector>
#include <iostream>
#include <set>
#include <queue>
#include <string>
#include <cstdlib>
#include <cstring>
#include <cmath>
using namespace std;
typedef pair<int,int>pii;
typedef long long LL;
const int N=6e4+;
const int mod=1e9+;
int n,m,s,k,t,cnt,idl[N<<],idr[N<<];
bool vis[N][];
LL d[N][];
vector<pii>edg[N];
struct man{
int v;
int c;
LL w;
bool operator<(const man &e)const{
return w>e.w;
}
};
priority_queue<man>q;
void dij(int s){
memset(d,-,sizeof d);memset(vis,,sizeof vis);
d[s][]=;
q.push(man{s,,});
while(!q.empty()){
int u=q.top().v,c=q.top().c;q.pop(); if(vis[u][c])continue;
vis[u][c]=;
for(int i=;i<edg[u].size();++i){
int v=edg[u][i].first,w=edg[u][i].second;
if(!vis[v][c]&&(d[v][c]==-||d[v][c]>d[u][c]+w)){
d[v][c]=d[u][c]+w;
q.push(man{v,c,d[v][c]});
}
if(c<k){
if(!vis[v][c+]&&(d[v][c+]==-||d[v][c+]>d[u][c])){
d[v][c+]=d[u][c];
q.push(man{v,c+,d[v][c+]});
}
}
}
}
}
int main()
{
int x,y,w;
scanf("%d%d%d",&n,&m,&k);
scanf("%d%d",&s,&t);
while(m--)
{
scanf("%d%d%d",&x,&y,&w);
edg[x].push_back(make_pair(y,w));
edg[y].push_back(make_pair(x,w));
}
dij(s);
LL ans=;
for(int i=;i<=k;i++)ans=min(ans,d[t][i]);
printf("%lld\n",ans);
return ;
}
【bzoj2763】[JLOI2011]飞行路线 (分层图最短路)(优先队列dij)的更多相关文章
- BZOJ2763: [JLOI2011]飞行路线(分层图 最短路)
题意 题目链接 Sol 分层图+最短路 建\(k+1\)层图,对于边\((u, v, w)\),首先在本层内连边权为\(w\)的无向边,再各向下一层对应的节点连边权为\(0\)的有向边 如果是取最大最 ...
- BZOJ2763[JLOI2011]飞行路线 [分层图最短路]
2763: [JLOI2011]飞行路线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2523 Solved: 946[Submit][Statu ...
- [bzoj2763][JLOI2011]飞行路线——分层图最短路
水题.不多说什么. #include <bits/stdc++.h> using namespace std; const int maxn = 10010; const int maxk ...
- bzoj2763 [JLOI]飞行路线 分层图最短路
问题描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的 ...
- bzoj2763: [JLOI2011]飞行路线(分层图spfa)
2763: [JLOI2011]飞行路线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3234 Solved: 1235[Submit][Stat ...
- [JLOI2011]飞行路线 分层图最短路
题目描述: Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在nn个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一 ...
- P4568 [JLOI2011]飞行路线 分层图最短路
思路:裸的分层图最短路 提交:1次 题解: 如思路 代码: #include<cstdio> #include<iostream> #include<cstring> ...
- 【bzoj2763】[JLOI2011]飞行路线 分层图最短路
题目描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的 ...
- bzoj 2763: [JLOI2011]飞行路线 -- 分层图最短路
2763: [JLOI2011]飞行路线 Time Limit: 10 Sec Memory Limit: 128 MB Description Alice和Bob现在要乘飞机旅行,他们选择了一家相 ...
- bzoj2763 [JLOI2011]飞行路线——分层图
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2763 构建分层图. 代码如下: 写法1(空间略大)(时间很慢): #include<i ...
随机推荐
- ListView获取网络数据并展示优化练习
权限: <uses-permission android:name="android.permission.INTERNET"></uses-permission ...
- BZOJ3533 [Sdoi2014]向量集 【线段树 + 凸包 + 三分】
题目链接 BZOJ3533 题解 我们设询问的向量为\((x_0,y_0)\),参与乘积的向量为\((x,y)\) 则有 \[ \begin{aligned} ans &= x_0x + y_ ...
- CF451E Devu and Flowers 解题报告
CF451E Devu and Flowers 题意: \(Devu\)有\(N\)个盒子,第\(i\)个盒子中有\(c_i\)枝花.同一个盒子内的花颜色相同,不同盒子的花颜色不同.\(Devu\)要 ...
- 停课day5
一转眼,已经停课五天了. 高二大佬们已经都走了,在机房里面呆着,有时感觉很孤寂. 但是为了能学好竞赛,这些都是在所不惜的. 好像多打打比赛啊,可是cf要FQ,洛谷之类的比赛还不勤. 哎,先去学一发SP ...
- string 类型转换
string转int "; int n = atoi(str.c_str()); cout << n << endl; int转string #include < ...
- HttpClient测试类请求端和服务端即可能出现乱码的解决
junit HttpClient 请求端 代码: package com.taotao.httpclient; import java.util.ArrayList; import java.util ...
- [fzu 2282]置换不动点大于等于k的排列数
题目链接:http://acm.fzu.edu.cn/problem.php?pid=2282 编号1~n的置换,不动点个数大于等于k的方案数. 参考百度百科错排公式,可以知道长度为n,每个数都不在自 ...
- Codeforces Round #534 (Div. 2) D. Game with modulo(取余性质+二分)
D. Game with modulo 题目链接:https://codeforces.com/contest/1104/problem/D 题意: 这题是一个交互题,首先一开始会有一个数a,你最终的 ...
- hadoop更换硬盘
hadoop服务器更换硬盘操作步骤(datanode hadoop目录${HADOOP_HOME}/bin 日志位置:/var/log/hadoop)1.登陆服务器,切换到mapred用户,执行 ...
- 转:增强学习(二)----- 马尔可夫决策过程MDP
1. 马尔可夫模型的几类子模型 大家应该还记得马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是 ...