[BZOJ2655]calc(拉格朗日插值法+DP)
2655: calc
Time Limit: 30 Sec Memory Limit: 512 MB
Submit: 428 Solved: 246
[Submit][Status][Discuss]Description
一个序列a1,...,an是合法的,当且仅当:
长度为给定的n。
a1,...,an都是[1,A]中的整数。
a1,...,an互不相等。
一个序列的值定义为它里面所有数的乘积,即a1a2...an。
求所有不同合法序列的值的和。
两个序列不同当且仅当他们任意一位不一样。
输出答案对一个数mod取余的结果。Input
一行3个数,A,n,mod。意义为上面所说的。
Output
一行结果。
Sample Input
9 7 10007Sample Output
3611HINT
数据规模和约定
0:A<=10,n<=10。
1..3:A<=1000,n<=20.
4..9:A<=10^9,n<=20
10..19:A<=10^9,n<=500。
全部:mod<=10^9,并且mod为素数,mod>A>n+1
Source
https://blog.csdn.net/qq_20669971/article/details/52790835
先列出DP方程,f[i][j]表示i个元素选j个进排列的总贡献,则f[i][j]=f[i-1][j-1]*i*j+f[i-1][j]。(这里也可以把n!提出来)
直接DP肯定不行,然后我们可以发现f[i][j]实际上是关于i的高次多项式,现在要确定是几次多项式。
第一种方法:f[i][i]=(i!)^2,根据递推式求得f[i][j]是2j次的。
https://www.cnblogs.com/xiao-ju-ruo-xjr/p/8510924.html
第二种方法:打表发现系数中i的次数和i本身的次数都为j。
https://blog.csdn.net/ez_yww/article/details/77221338
所以确定是2j次的(当然如果不想确定就多放几次也没关系)
这样我们可以用拉格朗日插值法先求出2n个点的f[x_i][n],拟合出多项式后将A代入即可(直接现场代入就好)
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=;
int f[N<<][N],x,n,mod,ans,m; int inv(int a){
int res=,b=mod-;
for (; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} int main(){
freopen("bzoj2655.in","r",stdin);
freopen("bzoj2655.out","w",stdout);
scanf("%d%d%d",&x,&n,&mod); f[][]=; m=*n+;
rep(i,,m) { f[i][]=; rep(j,,n) f[i][j]=(f[i-][j]+1ll*i*f[i-][j-])%mod; }
rep(i,,m){
int a=f[i][n],b=;
rep(j,,m) if (i!=j) a=1ll*a*(x-j)%mod,b=1ll*b*(i-j)%mod;
a=1ll*a*inv(b)%mod; ans=(ans+a)%mod;
}
rep(i,,n) ans=1ll*ans*i%mod;
printf("%d\n",(ans+mod)%mod);
return ;
}
可以O(m)插值,预处理一些东西就好(不过瓶颈在于DP所以无所谓)
边界考虑清楚。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=;
int x,n,mod,ans,m,f[N<<][N],pre[N<<],suf[N<<],fac[N<<],fin[N<<]; int inv(int a){
int res=,b=mod-;
for (; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} int main(){
freopen("bzoj2655.in","r",stdin);
freopen("bzoj2655.out","w",stdout);
scanf("%d%d%d",&x,&n,&mod); m=*n+;
rep(i,,m) f[i][]=;
rep(i,,m) rep(j,,n) f[i][j]=(f[i-][j]+1ll*i*f[i-][j-])%mod;
pre[]=; rep(i,,m) pre[i]=1ll*pre[i-]*(x-i)%mod;//(x-1)*(x-2)*...*(x-i)
suf[]=(x-m)%mod; rep(i,,m) suf[i]=1ll*suf[i-]*(x-m+i)%mod;//(x-m)*(x-m+1)*...(x-m+i)
fac[]=; rep(i,,m) fac[i]=1ll*fac[i-]*i%mod;//1*2*...*i
fin[m]=inv(fac[m]); for (int i=m-; ~i; i--) fin[i]=1ll*fin[i+]*(i+)%mod;//1/(1*2*...*i)
rep(i,,m){
int a=1ll*f[i][n]*pre[i-]%mod*((i==m)?:suf[m-i-])%mod;
int b=1ll*fin[i-]%mod*fin[m-i]*(((m-i)&)?-:)%mod;
ans=(ans+1ll*a*b)%mod;
}
rep(i,,n) ans=1ll*ans*i%mod;
printf("%d\n",(ans+mod)%mod);
return ;
}
以及另一道用拉格朗日插值法简化的题目:[BZOJ4559][JLOI2016]成绩比较
http://www.cnblogs.com/nbwzyzngyl/p/8394921.html
[BZOJ2655]calc(拉格朗日插值法+DP)的更多相关文章
- bzoj千题计划269:bzoj2655: calc (拉格朗日插值)
http://www.lydsy.com/JudgeOnline/problem.php?id=2655 f[i][j] 表示[1,i]里选严格递增的j个数,序列值之和 那么ans=f[A][n] * ...
- P4463 [集训队互测2012] calc 拉格朗日插值 dp 多项式分析
LINK:calc 容易得到一个nk的dp做法 同时发现走不通了 此时可以考虑暴力生成函数. 不过化简那套不太熟 且最后需要求多项式幂级数及多项式exp等难写的东西. 这里考虑观察优化dp的做法. 不 ...
- BZOJ2655 Calc - dp 拉格朗日插值法
BZOJ2655 Calc 参考 题意: 给定n,m,mod,问在对mod取模的背景下,从[1,m]中选出n个数相乘可以得到的总和为多少. 思路: 首先可以发现dp方程 ,假定dp[m][n]表示从[ ...
- [国家集训队] calc(动规+拉格朗日插值法)
题目 P4463 [国家集训队] calc 集训队的题目真是做不动呀\(\%>\_<\%\) 朴素方程 设\(f_{i,j}\)为前\(i\)个数值域\([1,j]\),且序列递增的总贡献 ...
- bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法
4559: [JLoi2016]成绩比较 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 261 Solved: 165[Submit][Status ...
- Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法
本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...
- 拉格朗日插值法——用Python进行数值计算
插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关 ...
- CPP&MATLAB实现拉格朗日插值法
开始学习MATLAB(R和Python先放一放...),老师推荐一本书,看完基础就是各种算法...首先是各种插值.先说拉格朗日插值法,这原理楼主完全不懂的,查的维基百科,好久才看懂.那里讲的很详细,这 ...
- codeforces 622F. The Sum of the k-th Powers 拉格朗日插值法
题目链接 求sigma(i : 1 to n)i^k. 为了做这个题这两天真是补了不少数论, 之前连乘法逆元都不知道... 关于拉格朗日插值法, 我是看的这里http://www.guokr.com/ ...
随机推荐
- WCF分布式开发步步为赢(13):WCF服务离线操作与消息队列MSMQ
之前曾经写过一个关于MSMQ消息队列的文章:WCF分布式开发必备知识(1):MSMQ消息队列 ,当时的目的也是用它来作为学习WCF 消息队列MSMQ编程的基础文章.在那篇文章里,我们详细介绍了MSMQ ...
- Android 对Layout_weight属性完全解析以及使用ListView来实现表格
用在linearlayout 如果我们想要按照权重比例来分配LinearLayout,我们需要将其宽度设置为0dip http://blog.csdn.net/xiaanming/article/de ...
- AWS文档与用户指南
AWS Command Line Interface http://docs.amazonaws.cn/cli/latest/userguide/cli-chap-welcome.html VM Im ...
- ContenOS 安装配置 rpm 版本 Jenkins
软件准备: jenkins-2.7.4-1.1.noarch.rpm java环境 安装jenkins: [root@localhost modules]# rpm -ih jenkins-2.7.4 ...
- domReady的兼容性实现方法
一.为何要实现domReay方法? 举例: <!DOCTYPE html> <html lang="en"> <head> <meta c ...
- 用户线程 (User Thread)、守护线程 (Daemon Thread)
在Java中有两类线程:用户线程 (User Thread).守护线程 (Daemon Thread). 所谓守护 线程,是指在程序运行的时候在后台提供一种通用服务的线程,比如垃圾回收线程就是一个很称 ...
- [BZOJ1024][SCOI2009]生日快乐解题报告
Description windy的生日到了,为了庆祝生日,他的朋友们帮他买了一个边长分别为 X 和 Y 的矩形蛋糕.现在包括windy,一共有 N 个人来分这块大蛋糕,要求每个人必须获得相同面积的蛋 ...
- python收集
http://my.oschina.net/mutour/blog/?disp=2&catalog=0&sort=time&p=4 Python 不使用win32api打开任务 ...
- [Leetcode Week6]Reorder List
Reorder List 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/reorder-list/description/ Description G ...
- Linux内核学习之中断 中断本质【转】
转自:http://www.linuxidc.com/Linux/2011-11/47657.htm [中断概述] 中断本质上是一种特殊的电信号,由硬件设备发向处理器.异常和中断的不同是异常在产生时必 ...