2655: calc

Time Limit: 30 Sec  Memory Limit: 512 MB
Submit: 428  Solved: 246
[Submit][Status][Discuss]

Description

  一个序列a1,...,an是合法的,当且仅当:
  长度为给定的n。
  a1,...,an都是[1,A]中的整数。
  a1,...,an互不相等。
  一个序列的值定义为它里面所有数的乘积,即a1a2...an。
  求所有不同合法序列的值的和。
  两个序列不同当且仅当他们任意一位不一样。
  输出答案对一个数mod取余的结果。

Input

  一行3个数,A,n,mod。意义为上面所说的。

Output

  一行结果。

Sample Input

9 7 10007

Sample Output

3611

HINT

数据规模和约定

  0:A<=10,n<=10。

  1..3:A<=1000,n<=20.

  4..9:A<=10^9,n<=20

  10..19:A<=10^9,n<=500。

  全部:mod<=10^9,并且mod为素数,mod>A>n+1

Source

[Submit][Status][Discuss]

https://blog.csdn.net/qq_20669971/article/details/52790835

先列出DP方程,f[i][j]表示i个元素选j个进排列的总贡献,则f[i][j]=f[i-1][j-1]*i*j+f[i-1][j]。(这里也可以把n!提出来)

直接DP肯定不行,然后我们可以发现f[i][j]实际上是关于i的高次多项式,现在要确定是几次多项式。

第一种方法:f[i][i]=(i!)^2,根据递推式求得f[i][j]是2j次的。

https://www.cnblogs.com/xiao-ju-ruo-xjr/p/8510924.html

第二种方法:打表发现系数中i的次数和i本身的次数都为j。

https://blog.csdn.net/ez_yww/article/details/77221338

所以确定是2j次的(当然如果不想确定就多放几次也没关系)

这样我们可以用拉格朗日插值法先求出2n个点的f[x_i][n],拟合出多项式后将A代入即可(直接现场代入就好)

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=;
int f[N<<][N],x,n,mod,ans,m; int inv(int a){
int res=,b=mod-;
for (; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} int main(){
freopen("bzoj2655.in","r",stdin);
freopen("bzoj2655.out","w",stdout);
scanf("%d%d%d",&x,&n,&mod); f[][]=; m=*n+;
rep(i,,m) { f[i][]=; rep(j,,n) f[i][j]=(f[i-][j]+1ll*i*f[i-][j-])%mod; }
rep(i,,m){
int a=f[i][n],b=;
rep(j,,m) if (i!=j) a=1ll*a*(x-j)%mod,b=1ll*b*(i-j)%mod;
a=1ll*a*inv(b)%mod; ans=(ans+a)%mod;
}
rep(i,,n) ans=1ll*ans*i%mod;
printf("%d\n",(ans+mod)%mod);
return ;
}

可以O(m)插值,预处理一些东西就好(不过瓶颈在于DP所以无所谓)

边界考虑清楚。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=;
int x,n,mod,ans,m,f[N<<][N],pre[N<<],suf[N<<],fac[N<<],fin[N<<]; int inv(int a){
int res=,b=mod-;
for (; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} int main(){
freopen("bzoj2655.in","r",stdin);
freopen("bzoj2655.out","w",stdout);
scanf("%d%d%d",&x,&n,&mod); m=*n+;
rep(i,,m) f[i][]=;
rep(i,,m) rep(j,,n) f[i][j]=(f[i-][j]+1ll*i*f[i-][j-])%mod;
pre[]=; rep(i,,m) pre[i]=1ll*pre[i-]*(x-i)%mod;//(x-1)*(x-2)*...*(x-i)
suf[]=(x-m)%mod; rep(i,,m) suf[i]=1ll*suf[i-]*(x-m+i)%mod;//(x-m)*(x-m+1)*...(x-m+i)
fac[]=; rep(i,,m) fac[i]=1ll*fac[i-]*i%mod;//1*2*...*i
fin[m]=inv(fac[m]); for (int i=m-; ~i; i--) fin[i]=1ll*fin[i+]*(i+)%mod;//1/(1*2*...*i)
rep(i,,m){
int a=1ll*f[i][n]*pre[i-]%mod*((i==m)?:suf[m-i-])%mod;
int b=1ll*fin[i-]%mod*fin[m-i]*(((m-i)&)?-:)%mod;
ans=(ans+1ll*a*b)%mod;
}
rep(i,,n) ans=1ll*ans*i%mod;
printf("%d\n",(ans+mod)%mod);
return ;
}

以及另一道用拉格朗日插值法简化的题目:[BZOJ4559][JLOI2016]成绩比较

http://www.cnblogs.com/nbwzyzngyl/p/8394921.html

[BZOJ2655]calc(拉格朗日插值法+DP)的更多相关文章

  1. bzoj千题计划269:bzoj2655: calc (拉格朗日插值)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2655 f[i][j] 表示[1,i]里选严格递增的j个数,序列值之和 那么ans=f[A][n] * ...

  2. P4463 [集训队互测2012] calc 拉格朗日插值 dp 多项式分析

    LINK:calc 容易得到一个nk的dp做法 同时发现走不通了 此时可以考虑暴力生成函数. 不过化简那套不太熟 且最后需要求多项式幂级数及多项式exp等难写的东西. 这里考虑观察优化dp的做法. 不 ...

  3. BZOJ2655 Calc - dp 拉格朗日插值法

    BZOJ2655 Calc 参考 题意: 给定n,m,mod,问在对mod取模的背景下,从[1,m]中选出n个数相乘可以得到的总和为多少. 思路: 首先可以发现dp方程 ,假定dp[m][n]表示从[ ...

  4. [国家集训队] calc(动规+拉格朗日插值法)

    题目 P4463 [国家集训队] calc 集训队的题目真是做不动呀\(\%>\_<\%\) 朴素方程 设\(f_{i,j}\)为前\(i\)个数值域\([1,j]\),且序列递增的总贡献 ...

  5. bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法

    4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status ...

  6. Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法

    本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...

  7. 拉格朗日插值法——用Python进行数值计算

    插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关 ...

  8. CPP&MATLAB实现拉格朗日插值法

    开始学习MATLAB(R和Python先放一放...),老师推荐一本书,看完基础就是各种算法...首先是各种插值.先说拉格朗日插值法,这原理楼主完全不懂的,查的维基百科,好久才看懂.那里讲的很详细,这 ...

  9. codeforces 622F. The Sum of the k-th Powers 拉格朗日插值法

    题目链接 求sigma(i : 1 to n)i^k. 为了做这个题这两天真是补了不少数论, 之前连乘法逆元都不知道... 关于拉格朗日插值法, 我是看的这里http://www.guokr.com/ ...

随机推荐

  1. C++——类继承以及类初始化顺序

    对于类以及类继承, 几个主要的问题:1) 继承方式: public/protected/private继承. 这是c++搞的, 实际上继承方式是一种允许子类控制的思想. 子类通过public继承, 可 ...

  2. 自定义toolbar教程

    1.写toolbar的布局文件 ,toolbar.xml <?xml version="1.0" encoding="utf-8"?> <Re ...

  3. Endnote 中文参考文献样式修改版

    http://blog.yuelong.info/post/endnote-gbt7714-2005.html 很多人不知道 EndNote 是自带中文参考文献引用样式的,即符合<文后参考文献著 ...

  4. bzoj5091 [Lydsy1711月赛]摘苹果 概率题

    [Lydsy1711月赛]摘苹果 Time Limit: 1 Sec  Memory Limit: 256 MBSubmit: 174  Solved: 135[Submit][Status][Dis ...

  5. MAVEN 编译打包测试 指定本地jar

    转载自:http://penuel.iteye.com/blog/1766102 maven对于互联网开发,进行版本管理有着不可或缺的作用;  而经常开发的程序猿直接联调或者依赖未上线或deploy的 ...

  6. fs.watch 爬坑

    上星期用 fs.watch 和 readline.createInterface 对pm2的合并日志做了监控,根据指定的错误信息重启服务 发现不管是手动vim编辑日志,还是等待日志自动输出. fs.w ...

  7. HDU3790---(双权最短路径)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3790 最短路径问题 Time Limit: 2000/1000 MS (Java/Others)    M ...

  8. codeforces B. Okabe and Banana Trees 结论题

    题目传送门 这道题 枚举一波y就好了 要求x,y整数 所以y最多1000个 然后算一波答案更新就好了 233 #include<cstdio> #include<cstring> ...

  9. python中的scapy模块

    scapy模块是干嘛用的? 答:Scapy的是一个强大的交互式数据包处理程序(使用python编写).它能够伪造或者解码大量的网络协议数据包,能够发送.捕捉.匹配请求和回复包等等.它可以很容易地处理一 ...

  10. pyhton发送邮件

    # import smtplib # from email.mime.text import MIMEText # _user = "你的qq邮箱" # _pwd = " ...