KM算法(运用篇)
最佳匹配
什么是完美匹配
如果一个二分图,X部和Y部的顶点数相等,若存在一个匹配包含X部与Y部的所有顶点,则称为完美匹配。
换句话说:若二分图X部的每一个顶点都与Y中的一个顶点匹配,**并且**Y部中的每一个顶点也与X部中的一个顶点匹配,则该匹配为完美匹配。
什么是完备匹配
如果一个二分图,X部中的每一个顶点都与Y部中的一个顶点匹配,**或者**Y部中的每一个顶点也与X部中的一个顶点匹配,则该匹配为完备匹配。
什么是最佳匹配
带权二分图的权值最大的完备匹配称为最佳匹配。
二分图的最佳匹配不一定是二分图的最大权匹配。
转化
可以添加一些权值为0的边,使得最佳匹配和最大权匹配统一起来。
KM算法
求二分图的最佳匹配有一个非常优秀的算法,可以做到O(N^3),这就是KM算法。该算法描述如下:
1.首先选择顶点数较少的为X部,初始时对X部的每一个顶点设置顶标,顶标的值为该点关联的最大边的权值,Y部的顶点顶标为0。
2.对于X部中的每个顶点,在相等子图中利用匈牙利算法找一条增广路径,如果没有找到,则修改顶标,扩大相等子图,继续找增广路径。当每个点都找到增广路径时,此时意味着每个点都在匹配中,即找到了二分图的完备匹配。该完备匹配即为二分图的最佳匹配。
什么是相等子图呢?因为每个顶点有一个顶标,如果我们选择边权等于两端点的顶标之和的边,它们组成的图称为相等子图。
如果从X部中的某个点Xi出发在相等子图中没有找到增广路径,我们是如何修改顶标的呢?如果我们没有找到增广路径,则我们一定找到了许多条从Xi出发并结束于X部的匹配边与未匹配边交替出现的路径,姑且称之为交错树。我们将交错树中X部的顶点顶标减去一个值d,交错树中属于Y部的顶点顶标加上一个值d。这个值后面要讲它如何计算。那么我们会发现:
两端都在交错树中的边(i,j),其顶标和没有变化。也就是说,它原来属于相等子图,现在仍属于相等子图。
两端都不在交错树中的边(i,j),其顶标也没有变化。也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。
X端不在交错树中,Y端在交错树中的边(i,j),它的顶标和会增大。它原来不属于相等子图,现在仍不属于相等子图。
X端在交错树中,Y端不在交错树中的边(i,j),它的顶标和会减小。也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。
我们修改顶标的目的就是要扩大相等子图。为了保证至少有一条边进入相等子图,我们可以在交错树的边中寻找顶标和与边权之差最小的边,这就是前面说的d值。将交错树中属于X部的顶点减去d,交错树中属于Y部的顶点加上d。则可以保证至少有一条边扩充进入相等子图。
3.当X部的所有顶点都找到了增广路径后,则找到了完备匹配,此完备匹配即为最佳匹配。
相等子图的若干性质
- 在任意时刻,相等子图上的最大权匹配一定小于等于相等子图的顶标和。
- 在任意时刻,相等子图的顶标和即为所有顶点的顶标和。
- 扩充相等子图后,相等子图的顶标和将会减小。
- 当相等子图的最大匹配为原图的完备匹配时,匹配边的权值和等于所有顶点的顶标和,此匹配即为最佳匹配
以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶标,每次修改顶 标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数slack,每次开 始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与 A[i]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y顶点的slack值中的最小值作为d值即可。但还要注意一点:修 改顶标后,要把所有不在交错树中的Y顶点的slack值都减去d
模板一,用全局变量minz表示边权和顶标最小的差值,省去slack数组
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<map>
using namespace std;
typedef long long ll;
const int maxn = + ;
const int INF = 0x3f3f3f3f; int wx[maxn], wy[maxn];//每个点的顶标值(需要根据二分图处理出来)
int cx[maxn], cy[maxn];//每个点所匹配的点
int visx[maxn], visy[maxn];//每个点是否加入增广路
int cntx, cnty;//分别是X和Y的点数
int Map[maxn][maxn];//二分图边的权值
int minz;//边权和顶标最小的差值 bool dfs(int u)//进入DFS的都是X部的点
{
visx[u] = ;//标记进入增广路
for(int v = ; v <= cnty; v++)
{
if(!visy[v] && Map[u][v] != INF)//如果Y部的点还没进入增广路,并且存在路径
{
int t = wx[u] + wy[v] - Map[u][v];
if(t == )//t为0说明是相等子图
{
visy[v] = ;//加入增广路 //如果Y部的点还未进行匹配
//或者已经进行了匹配,可以从原来的匹配反向找到增广路
//那就可以进行匹配
if(cy[v] == - || dfs(cy[v]))
{
cx[u] = v;
cy[v] = u;//进行匹配
return ;
}
}
else if(t > )//此处t一定是大于0,因为顶标之和一定>=边权
{
minz = min(minz, t);//边权和顶标最小的差值
}
}
}
return false;
} int KM()
{
memset(cx, -, sizeof(cx));
memset(cy, -, sizeof(cy));
memset(wx, , sizeof(wx));//wx的顶标为该点连接的边的最大权值
memset(wy, , sizeof(wy));//wy的顶标为0
for(int i = ; i <= cntx; i++)//预处理出顶标值
{
for(int j = ; j <= cnty; j++)
{
if(Map[i][j] == INF)continue;
wx[i] = max(wx[i], Map[i][j]);
}
}
for(int i = ; i <= cntx; i++)//枚举X部的点
{
while()
{
minz = INF;
memset(visx, , sizeof(visx));
memset(visy, , sizeof(visy));
if(dfs(i))break;//已经匹配正确 //还未匹配,将X部的顶标减去minz,Y部的顶标加上minz
for(int j = ; j <= cntx; j++)
if(visx[j])wx[j] -= minz;
for(int j = ; j <= cnty; j++)
if(visy[j])wy[j] += minz;
}
} int ans = ;//二分图最优匹配权值
for(int i = ; i <= cntx; i++)
if(cx[i] != -)ans += Map[i][cx[i]];
return ans;
}
int n, k;
int main()
{
while(scanf("%d", &n) != EOF)
{
for(int i = ; i <= n; i++)
{
for(int j = ; j <= n; j++)
scanf("%d", &Map[i][j]);
}
cntx = cnty = n;
printf("%d\n", KM());
}
return ;
}
模板二,用slack数组(对于完全图的优化很快)
和全局变量不同的是,全局变量在每次while循环中都需要赋值成INF,每次求出的是所有点的最小值,而slack数组在每个while外面就初始化好,每次while循环slack数组的每个值都在用到,一次增广路中求出的slack值会更准确,循环次数比全局变量更少
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<map>
using namespace std;
typedef long long ll;
const int maxn = + ;
const int INF = 0x3f3f3f3f; int wx[maxn], wy[maxn];//每个点的顶标值(需要根据二分图处理出来)
int cx[maxn], cy[maxn];//每个点所匹配的点
int visx[maxn], visy[maxn];//每个点是否加入增广路
int cntx, cnty;//分别是X和Y的点数
int Map[maxn][maxn];//二分图边的权值
int slack[maxn];//边权和顶标最小的差值 bool dfs(int u)//进入DFS的都是X部的点
{
visx[u] = ;//标记进入增广路
for(int v = ; v <= cnty; v++)
{
if(!visy[v] && Map[u][v] != INF)//如果Y部的点还没进入增广路,并且存在路径
{
int t = wx[u] + wy[v] - Map[u][v];
if(t == )//t为0说明是相等子图
{
visy[v] = ;//加入增广路 //如果Y部的点还未进行匹配
//或者已经进行了匹配,可以从原来的匹配反向找到增广路
//那就可以进行匹配
if(cy[v] == - || dfs(cy[v]))
{
cx[u] = v;
cy[v] = u;//进行匹配
return ;
}
}
else if(t > )//此处t一定是大于0,因为顶标之和一定>=边权
{
slack[v] = min(slack[v], t);
//slack[v]存的是Y部的点需要变成相等子图顶标值最小增加多少
}
}
}
return false;
} int KM()
{
memset(cx, -, sizeof(cx));
memset(cy, -, sizeof(cy));
memset(wx, , sizeof(wx));//wx的顶标为该点连接的边的最大权值
memset(wy, , sizeof(wy));//wy的顶标为0
for(int i = ; i <= cntx; i++)//预处理出顶标值
{
for(int j = ; j <= cnty; j++)
{
if(Map[i][j] == INF)continue;
wx[i] = max(wx[i], Map[i][j]);
}
}
for(int i = ; i <= cntx; i++)//枚举X部的点
{
memset(slack, INF, sizeof(slack));
while()
{ memset(visx, , sizeof(visx));
memset(visy, , sizeof(visy));
if(dfs(i))break;//已经匹配正确 int minz = INF;
for(int j = ; j <= cnty; j++)
if(!visy[j] && minz > slack[j])
//找出还没经过的点中,需要变成相等子图的最小额外增加的顶标值
minz = slack[j];
//和全局变量不同的是,全局变量在每次while循环中都需要赋值成INF,每次求出的是所有点的最小值
//而slack数组在每个while外面就初始化好,每次while循环slack数组的每个值都在用到
//在一次增广路中求出的slack值会更准确,循环次数比全局变量更少 //还未匹配,将X部的顶标减去minz,Y部的顶标加上minz
for(int j = ; j <= cntx; j++)
if(visx[j])wx[j] -= minz;
for(int j = ; j <= cnty; j++)
//修改顶标后,要把所有不在交错树中的Y顶点的slack值都减去minz
if(visy[j])wy[j] += minz;
else slack[j] -= minz;
}
} int ans = ;//二分图最优匹配权值
for(int i = ; i <= cntx; i++)
if(cx[i] != -)ans += Map[i][cx[i]];
return ans;
}
int n, k;
int main()
{
while(scanf("%d", &n) != EOF)
{
for(int i = ; i <= n; i++)
{
for(int j = ; j <= n; j++)
scanf("%d", &Map[i][j]);
}
cntx = cnty = n;
printf("%d\n", KM());
}
return ;
}
KM算法(运用篇)的更多相关文章
- KM算法(理解篇)
转载:https://www.cnblogs.com/logosG/p/logos.html(很好,很容易理解) 一.匈牙利算法 匈牙利算法用于解决什么问题? 匈牙利算法用于解决二分图的最大匹配问题. ...
- KM算法萌新讲解篇
KM算法 首先了解问题:也就是最大权值匹配: 二分图里,边带了权值,求整幅图里匹配最大/最小的权值 因为接触匈牙利算法的时候看的是找对象系列的博文,所以也自己写一发找对象的博文吧: 算法背景: 信 ...
- KM算法及其优化的学习笔记&&bzoj2539: [Ctsc2000]丘比特的烦恼
感谢 http://www.cnblogs.com/vongang/archive/2012/04/28/2475731.html 这篇blog里提供了3个链接……基本上很明白地把KM算法是啥讲清楚 ...
- 匈牙利算法、KM算法
PS:其实不用理解透增广路,交替路,网上有对代码的形象解释,看懂也能做题,下面我尽量把原理说清楚 基本概念 (部分来源.部分来源) 二分图: 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相 ...
- HDU-2255(KM算法)
HDU-2255 题目意思转化之后就是,给你一个二分图(也称 二部图) ,要求选择一些边让左边的点都对应左边的某一个点!该问题也叫做二分图最大匹配.所以可以用KM算法来做这道题.KM前提你要理解匈牙利 ...
- 二分图最大权完美匹配KM算法
KM算法二分图 KM求得二分图与普通二分图的不同之处在于:此二分图的每条边(男生女生)上都附了权值(好感度).然后,求怎样完美匹配使得权值之和最大. 这,不止一般的麻烦啊. 可以通过一个期望值来求. ...
- 二分图最大权匹配——KM算法
前言 这东西虽然我早就学过了,但是最近才发现我以前学的是假的,心中感慨万千(雾),故作此篇. 简介 带权二分图:每条边都有权值的二分图 最大权匹配:使所选边权和最大的匹配 KM算法,全称Kuhn-Mu ...
- 【7.18总结】KM算法
先贴代码,参考博客来源于:https://blog.csdn.net/zyy173533832/article/details/11519291#commentBox 例题:HDU 2255 题意:n ...
- KM 算法
KM 算法 可能需要先去学学匈牙利算法等二分图相关知识. 模板题-洛谷P6577 [模板]二分图最大权完美匹配 给 \(n\) 和 \(m\) 与边 \(u_i,v_i,w_i(1\le i\le m ...
随机推荐
- Luogu 4949 最短距离
这就是个水题. 一开始想把整个环找出来断开当一条链,然后其他部分正常链剖,两个点之间的路径如果经过环就考虑一下走哪边更快. 但是这样子还是太麻烦了. 我们可以直接断开环上的一条边,然后正常链剖,只要在 ...
- Oracle——创建和管理表
一.常见的数据库对象 对象 描述 表 基本的数据存储集合,由行和列组成 视图 从表中抽出的逻辑上相关的数据集合 序列 提供有规律的数值 索引 提高查询的效率 同以词 给对象起别名 二.Oracle 数 ...
- .NET将服务器文件导出
导出文件: string filePath = Server.UrlDecode(filePath); if (File.Exists(fi ...
- input 框提示信息
给input添加提示信息,只需添加 “placeholder”的class,将提示信息放在value中, 其中“placeholder”的名字是随便取的,不是H5的“placeholder”属性 例子 ...
- Gson 配置解析
之前项目用到了gson对json和Java类之间互转,现在将gson的配置总结一下. 首先,创建gson对象之间,建立gsonbuilder对象,并配置 // 不导出实体类中没有用@Expose注解的 ...
- css总结16:HTML5 多媒体音频(Audio)视频(video )
1 显示嵌入网页中的 MP3 文件: <embed height="50" width="100" src="horse.mp3"&g ...
- Java 可变字符串StringBuilder/StringBuffer的区别
public class StringBuilder_and_StringBuffer { private static long SystemTime(){ return System.curren ...
- Header Only Library
什么是Header Only Library Header Only Library把一个库的内容完全写在头文件中,不带任何cpp文件. 这是一个巧合,决不是C++的原始设计. 第一次这么做估计是ST ...
- java中为什么要使用代理
引入代理: 我们为什么要引入java的代理,除了当前类能够提供的功能外,我们还需要补充一些其他功能. 最容易想到的情况就是权限过滤,我有一个类做某项业务,但是由于安全原因只有某些用户才可以调用这个类, ...
- 【C#】CLR内存那点事(高级)
对于这篇,不想再对值类型进行讨论,如要看值类型的内存怎么玩可以看一下(CLR内存那点事 初级),我们这篇主要讨论一下引用类型. 先来装备两个类 internal class Employee { pu ...