LOJ6502. 「雅礼集训 2018 Day4」Divide(构造+dp)
题目链接
题解
中间一档部分分提示我们将所有的 \(w_i\) 排序。
考虑如果我们能构造出这样一个 \(w_i\) 的序列,使得该序列满足:对于任意的 \(i(1 \leq i \leq n)\),所有的 \(j(1 \leq j < i)\) 都满足 \(w_i + w_j \geq m\) 或者所有的 \(j(1 \leq j < i)\) 都满足 \(w_i + w_j < m\),那么我们就可以使用动态规划求解。
具体地,设 \(f_{i, j}\) 表示处理到了 \(w_i\),且 \(A\) 队中已有 \(j\) 个元素能得到的最大贡献值。若 \(w_i\) 满足对于任意 \(j(1 \leq j < i)\) 有 \(w_i + w_j \geq m\),那么考虑将 \(w_i\) 放入 \(A\) 队,则 \(w_i\) 与前面所有放入 \(B\) 队的 \(i - j\) 个元素都能配合默契,因此有 \(f_{i, j} = f_{i - 1, j - 1} + i - j\);考虑放入 \(B\) 队,则 \(w_i\) 与前面所有放入 \(A\) 队中的 \(j\) 个元素都能配合默契,因此有 \(f_{i, j} = f_{i - 1, j} + j\),最终答案在两者间取 \(\rm max\)。若 \(w_i\) 满足对于任意 \(j(1 \leq j < i)\) 有 \(w_i + w_j < m\),由于无论放入 \(A\) 队还是 \(B\) 队都不能造成贡献,因此转移为 \(f_{i, j} = {\rm max}\{f_{i - 1, j - 1}, f_{i - 1, j}\}\)。求方案数在转移 \(f\) 时一起统计即可。
现在的问题是如何构造这个序列。
我们先将 \(w\) 从小到大排序,发现若 \(w_1 + w_n \geq m\),那么对于任意的 \(j(1 \leq j < n)\) 均满足 \(w_j + w_n \geq m\);若 \(w_1 + w_n < m\),那么对于任意的 \(j(1 < j \leq n)\) 均满足 \(w_1 + w_j < m\),但依然有可能存在 \(j(1 \leq j < n)\) 满足 \(w_j + w_n \geq m\)。
因此,我们可以思考如下算法:对于按从小到大排序后得到的区间 \([l, r]\),若满足 \(w_l + w_r \geq m\),那么弹出 \(w_r\),处理区间 \([l, r - 1]\),否则弹出 \(w_l\),处理区间 \([l + 1, r]\)。每次我们将弹出的数放到一个新的数组 \(p\) 的最左端,那么可以证明,得到的 \(p\) 数组就能够满足我们所需要的性质。
我们求出数组 \(p\) 后,就能够通过 dp 在 \(O(n^2)\) 的时间内解决此题了。
代码
#include<bits/stdc++.h>
using namespace std;
#define X first
#define Y second
#define mp make_pair
#define pb push_back
#define debug(...) fprintf(stderr, __VA_ARGS__)
typedef long long ll;
typedef long double ld;
typedef unsigned int uint;
typedef pair<int, int> pii;
typedef unsigned long long ull;
template<typename T> inline void read(T& x) {
char c = getchar();
bool f = false;
for (x = 0; !isdigit(c); c = getchar()) {
if (c == '-') {
f = true;
}
}
for (; isdigit(c); c = getchar()) {
x = x * 10 + c - '0';
}
if (f) {
x = -x;
}
}
template<typename T> inline bool checkMax(T& a, const T& b) {
return a < b ? a = b, true : false;
}
template<typename T> inline bool checkMin(T& a, const T& b) {
return a > b ? a = b, true : false;
}
const int N = 2e3 + 10, mod = 1e9 + 7;
inline void add(int& x, int y) {
x = (x + y) % mod;
}
int n, m, a[N], all[N], f[N][N], g[N][N];
int main() {
read(n), read(m);
for (register int i = 1; i <= n; ++i) {
read(a[i]);
}
sort(a + 1, a + 1 + n);
int l = 1, r = n;
for (register int i = n; i; --i) {
if (a[l] + a[r] >= m) {
all[i] = 1, --r;
} else {
all[i] = 0, ++l;
}
}
int ans = 0;
g[0][0] = 1;
for (register int i = 1; i <= n; ++i) {
for (register int j = 0; j <= i; ++j) {
if (j ^ i) {
int v = f[i - 1][j] + (all[i] ? j : 0);
if (v > f[i][j]) {
f[i][j] = v, g[i][j] = g[i - 1][j];
} else if (v == f[i][j]) {
add(g[i][j], g[i - 1][j]);
}
} if (j) {
int v = f[i - 1][j - 1] + (all[i] ? i - j : 0);
if (v > f[i][j]) {
f[i][j] = v, g[i][j] = g[i - 1][j - 1];
} else if (v == f[i][j]) {
add(g[i][j], g[i - 1][j - 1]);
}
}
checkMax(ans, f[i][j]);
}
}
int res = 0;
for (register int i = 0; i <= n; ++i) {
if (f[n][i] == ans) {
add(res, g[n][i]);
}
}
printf("%d %d\n", ans, res);
return 0;
}
LOJ6502. 「雅礼集训 2018 Day4」Divide(构造+dp)的更多相关文章
- Loj #6503. 「雅礼集训 2018 Day4」Magic
Loj #6503. 「雅礼集训 2018 Day4」Magic 题目描述 前进!前进!不择手段地前进!--托马斯 · 维德 魔法纪元元年. 1453 年 5 月 3 日 16 时,高维碎片接触地球. ...
- LOJ#6503.「雅礼集训 2018 Day4」Magic[容斥+NTT+启发式合并]
题意 \(n\) 张卡牌 \(m\) 种颜色,询问有多少种本质不同的序列满足相邻颜色相同的位置数量等于 \(k\). 分析 首先本质不同不好直接处理,可以将同种颜色的卡牌看作是不相同的,求出答案后除以 ...
- 【loj#6503.】「雅礼集训 2018 Day4」Magic(生成函数+容斥)
题面 传送门 题解 复杂度比较迷啊-- 以下以\(n\)表示颜色总数,\(m\)表示总的卡牌数 严格\(k\)对比较难算,我们考虑容斥 首先有\(i\)对就代表整个序列被分成了\(m-i\)块互不相同 ...
- LOJ6503. 「雅礼集训 2018 Day4」Magic(容斥原理+NTT)
题目链接 https://loj.ac/problem/6503 题解 题中要求本质不同的序列数量,不太好搞.我们考虑给相同颜色的牌加上编号,这样所有牌都不相同.那么如果我们求出了答案,只需要将答案除 ...
- 「雅礼集训 2018 Day2」农民
传送门 Description 「搞 OI 不如种田.」 小 D 在家种了一棵二叉树,第 ii 个结点的权值为 \(a_i\). 小 D 为自己种的树买了肥料,每天给树施肥. 可是几天后,小 D 却 ...
- 2018.10.27 loj#6035. 「雅礼集训 2017 Day4」洗衣服(贪心+堆)
传送门 显然的贪心题啊...考试没调出来10pts滚了妙的一啊 直接分别用堆贪心出洗完第iii件衣服需要的最少时间和晾完第iii件衣服需要的最少时间. 我们设第一个算出来的数组是aaa,第二个是bbb ...
- 【loj - 6516】「雅礼集训 2018 Day11」进攻!
目录 description solution accepted code details description 你将向敌方发起进攻!敌方的防御阵地可以用一个 \(N\times M\) 的 \(0 ...
- LOJ #6509. 「雅礼集训 2018 Day7」C
神仙题 LOJ #6509 题意 给定一棵树,点权为0/1,每次随机一个点(可能和之前所在点相同)走到该点并将其点权异或上1 求期望的移动距离使得所有点点权相同 题解 根本不会解方程 容易发现如果一个 ...
- loj 6037 「雅礼集训 2017 Day4」猜数列 - 动态规划
题目传送门 传送门 题目大意 有一个位置数列,给定$n$条线索,每条线索从某一个位置开始,一直向左或者向右走,每遇到一个还没有在线索中出现的数就将它加入线索,问最小的可能的数列长度. 依次从左到右考虑 ...
随机推荐
- datatables01 安装、数据源、选中行事件、新增一行数据、删除一行数据
1 安装 1.1 引入必要文件 要在项目中使用datatables需要引入三个文件 >DataTables CSS >jQuery >DataTables JS <!-- Da ...
- 34-n的pi次方
链接:https://www.nowcoder.com/acm/contest/118/B来源:牛客网 题目描述 喜爱ACM的PBY同学遇到了一道数学难题,已知底数n,请你帮他准确的计算出结果a = ...
- gitlab-ci配置疑难备忘
最近在自搭的gitlab服务器上加上了ci,大部份操作都比较顺利,但是也碰到一些问题抓狂,记录如下. 1.关于一个project配多个runner:在gitlab-ci里是支持的,但是含义确有点反常, ...
- 10、差异基因topGO富集
参考:http://www.biotrainee.com/thread-558-1-1.html http://bioconductor.org/packages/3.7/bioc/ http://w ...
- libtool: syntax error near unexpected token `]*
../libtool: line 543: syntax error near unexpected token `]*' ../libtool: line 543: ` *[\[\~\#\ ...
- unity 大游戏使用什么框架
关于Unity的架构有如下几种常用的方式.1.EmptyGO在Hierarchy上创建一个空的GameObject,然后挂上所有与GameObject无关的逻辑控制的脚本.使用GameObject.F ...
- 关于modelsim闪退问题
电脑之前做过仿真,modelsim是可以完美调用的,但是最近莫名其妙的就出现闪退问题,不通过quartus或者ise调用,单独使用的时候也会闪退. 偶尔一次能抓到错误消息.如下图所示: 然并卵,网上根 ...
- Ext JS v2.3.0 Ext.grid.ColumnModel renderer Record 获取列值
场景:设置某一列的值,但是需要获取其他列的值 {"header": '<s:property value="name" />', "wid ...
- Sharepoint2013搜索学习笔记之自定义查询规则(十)
自定义查询规则,可以根据搜索的关键字将指定的一个或一堆搜索结果提升到第一的位置,如我搜索周杰伦,可以指定搜索最靠前的结果是sharepoint网站内周杰伦的视频如下图: 第一步,进入管理中心,点击管理 ...
- 201621123012 《Java程序设计》第1周学习总结
1. 本章学习总结 学习了java的理论知识和它与C语言的差别,什么是JVM,区分JRE与JDK并学习JAVA环境的安装.熟悉控制台下的常用命令,java函数的编写.熟练使用编写JAVA所需要的工具( ...