CodeForces 385C Bear and Prime Numbers 素数打表
第一眼看这道题目的时候觉得可能会很难也看不太懂,但是看了给出的Hint之后思路就十分清晰了
Consider the first sample. Overall, the first sample has 3 queries. The first query l = 2, r = 11 comes. You need to count f(2) + f(3) + f(5) + f(7) + f(11) = 2 + 1 + 4 + 2 + 0 = 9.
The second query comes l = 3, r = 12. You need to count f(3) + f(5) + f(7) + f(11) = 1 + 4 + 2 + 0 = 7.
The third query comes l = 4, r = 4. As this interval has no prime numbers, then the sum equals 0.
xn的范围在(2 ≤ xi ≤ 107),而 l, r 的范围在 (2 ≤ li ≤ ri ≤ 2·109) ,易得在计算的时候是不会考虑107 以后了
首先写一个素数快速打表,同时也统计一下在 l, r 范围内每个数满足题目条件的总数 (虽然觉得这样的打表方法的确很慢)
然后注意了,因为查询的次数很多,多达5*104次 ,所以在统计的时候可以算出累计和以节省时间
Source Code:
//#pragma comment(linker, "/STACK:16777216") //for c++ Compiler
#include <stdio.h>
#include <iostream>
#include <fstream>
#include <cstring>
#include <cmath>
#include <stack>
#include <string>
#include <map>
#include <set>
#include <list>
#include <queue>
#include <vector>
#include <algorithm>
#define Max(a,b) (((a) > (b)) ? (a) : (b))
#define Min(a,b) (((a) < (b)) ? (a) : (b))
#define Abs(x) (((x) > 0) ? (x) : (-(x)))
#define MOD 1000000007
#define pi acos(-1.0) using namespace std; typedef long long ll ;
typedef unsigned long long ull ;
typedef unsigned int uint ;
typedef unsigned char uchar ; template<class T> inline void checkmin(T &a,T b){if(a>b) a=b;}
template<class T> inline void checkmax(T &a,T b){if(a<b) a=b;} const double eps = 1e- ;
const int N = ;
const int M = * ;
const ll P = 10000000097ll ;
const int MAXN = ; int cnt[MAXN],a[MAXN];
bool check[MAXN]; void init_prime(){
for(int i = ; i < MAXN; ++i){ //素数打表
if(!check[i]){
for(int j = i; j < MAXN; j += i){
check[j] = true;
cnt[i] += a[j];
}
}
}
} int main(){
std::ios::sync_with_stdio(false);
int i, j, t, k, u, v, numCase = ;
int n, q, x, y;
cin >> n;
for(i = ; i <= n; ++i){
cin >> x;
++a[x];
}
init_prime();
for(i = ; i < MAXN; ++i){
cnt[i] += cnt[i - ]; //作累计和以节省查询时间
}
cin >> t;
while(t--){
cin >> x >> y;
checkmin(x, );
checkmin(y, );
cout << cnt[y] - cnt[x - ] << endl;
}
return ;
}
CodeForces 385C Bear and Prime Numbers 素数打表的更多相关文章
- Codeforces 385C Bear and Prime Numbers(素数预处理)
Codeforces 385C Bear and Prime Numbers 其实不是多值得记录的一道题,通过快速打素数表,再做前缀和的预处理,使查询的复杂度变为O(1). 但是,我在统计数组中元素出 ...
- Codeforces 385C Bear and Prime Numbers
题目链接:Codeforces 385C Bear and Prime Numbers 这题告诉我仅仅有询问没有更新通常是不用线段树的.或者说还有比线段树更简单的方法. 用一个sum数组记录前n项和, ...
- Codeforces 385C - Bear and Prime Numbers(素数筛+前缀和+hashing)
385C - Bear and Prime Numbers 思路:记录数组中1-1e7中每个数出现的次数,然后用素数筛看哪些能被素数整除,并加到记录该素数的数组中,然后1-1e7求一遍前缀和. 代码: ...
- CodeForces - 385C Bear and Prime Numbers (埃氏筛的美妙用法)
Recently, the bear started studying data structures and faced the following problem. You are given a ...
- codeforces 385C Bear and Prime Numbers 预处理DP
题目链接:http://codeforces.com/problemset/problem/385/C 题目大意:给定n个数与m个询问区间,问每个询问区间中的所有素数在这n个数中被能整除的次数之和 解 ...
- UVA 10539 - Almost Prime Numbers 素数打表
Almost prime numbers are the non-prime numbers which are divisible by only a single prime number.In ...
- POJ 2739 Sum of Consecutive Prime Numbers(素数)
POJ 2739 Sum of Consecutive Prime Numbers(素数) http://poj.org/problem? id=2739 题意: 给你一个10000以内的自然数X.然 ...
- CF385C Bear and Prime Numbers 数学
题意翻译 给你一串数列a.对于一个质数p,定义函数f(p)=a数列中能被p整除的数的个数.给出m组询问l,r,询问[l,r]区间内所有素数p的f(p)之和. 题目描述 Recently, the be ...
- HDOJ(HDU) 2138 How many prime numbers(素数-快速筛选没用上、)
Problem Description Give you a lot of positive integers, just to find out how many prime numbers the ...
随机推荐
- (Problem 73)Counting fractions in a range
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- 高质量程序设计指南C/C++语言——内存管理
• free()和delete只是把指针所指的内容给释放掉,并没有把指针本身删掉.指针被free()或delete以后其地址仍然不变(不等于NULL),只是该地址对应的内存是垃圾——p成了野指针.如果 ...
- 【转】IOS 输入框被键盘遮盖的解决方法
做IOS开发时,难免会遇到输入框被键盘遮掩的问题.上网上搜索了很多相关的解决方案,看了很多,但是由衷的觉得太麻烦了. 有的解决方案是将视图上的所有的东西都添加到一个滚动视图对象( UIScrollVi ...
- IOS 表视图(UITableVIew)的使用方法(3)名单的索引显示
当数据量特别大时,简单地以role进行分段,对实际查找的效率提升并不大.就像上一节开头所说,开发者可以根据球员名字的首字母进行分段,且分成26段.由于段数较多,可以使用UITableView的索引机制 ...
- DAO以及获取自动生成主键值
package com.alibaba.sql; import java.lang.reflect.InvocationTargetException; import java.sql.Connect ...
- Java Socket 入门2 Java与C# Socket 通信
参考http://www.cnblogs.com/cdtarena/p/3184313.html 这里以C#作为服务端 其实不论C#是服务端还是客户端都不是主要问题 毕竟不论客户端还是服务端 都包括 ...
- VC++ win32 多线程 一边画圆一边画矩形
// WinThreadTest.cpp : Defines the entry point for the application. // #include "stdafx.h" ...
- QT不让windows休眠的方法
对于一些Windows应用程序,必须要保证os不能休眠才能有效工作,如迅雷下载软件,如果os进入休眠,则会导致网络不正常,从而导致不能下载东西.那木有没有1种机制,当打开软件的时候,就自动将os设为不 ...
- nodejs partials 分布视图
在学习<node.js开发指南>nodejs partials view时,怎么都不能运行成功.经过艰苦探索,终于成功了,分享一下. Cause: nodejs 的express 版本之间 ...
- iOS开发之第三方登录QQ -- 史上最全最新第三方登录QQ方式实现
项目地址 : https://github.com/zhonggaorong/QQLoginDemo/tree/master 最新版本的qq登录实现步骤实现: 1. 首先,你需要去向腾讯申请账号. ...