第一眼看这道题目的时候觉得可能会很难也看不太懂,但是看了给出的Hint之后思路就十分清晰了

Consider the first sample. Overall, the first sample has 3 queries.

The first query l = 2, r = 11 comes. You need to count f(2) + f(3) + f(5) + f(7) + f(11) = 2 + 1 + 4 + 2 + 0 = 9.
The second query comes l = 3, r = 12. You need to count f(3) + f(5) + f(7) + f(11) = 1 + 4 + 2 + 0 = 7.
The third query comes l = 4, r = 4. As this interval has no prime numbers, then the sum equals 0.

xn的范围在(2 ≤ xi ≤ 107),而 l, r 的范围在 (2 ≤ li ≤ ri ≤ 2·109) ,易得在计算的时候是不会考虑107  以后了

首先写一个素数快速打表,同时也统计一下在 l, r 范围内每个数满足题目条件的总数 (虽然觉得这样的打表方法的确很慢)

然后注意了,因为查询的次数很多,多达5*104次 ,所以在统计的时候可以算出累计和以节省时间

Source Code:

//#pragma comment(linker, "/STACK:16777216") //for c++ Compiler
#include <stdio.h>
#include <iostream>
#include <fstream>
#include <cstring>
#include <cmath>
#include <stack>
#include <string>
#include <map>
#include <set>
#include <list>
#include <queue>
#include <vector>
#include <algorithm>
#define Max(a,b) (((a) > (b)) ? (a) : (b))
#define Min(a,b) (((a) < (b)) ? (a) : (b))
#define Abs(x) (((x) > 0) ? (x) : (-(x)))
#define MOD 1000000007
#define pi acos(-1.0) using namespace std; typedef long long ll ;
typedef unsigned long long ull ;
typedef unsigned int uint ;
typedef unsigned char uchar ; template<class T> inline void checkmin(T &a,T b){if(a>b) a=b;}
template<class T> inline void checkmax(T &a,T b){if(a<b) a=b;} const double eps = 1e- ;
const int N = ;
const int M = * ;
const ll P = 10000000097ll ;
const int MAXN = ; int cnt[MAXN],a[MAXN];
bool check[MAXN]; void init_prime(){
for(int i = ; i < MAXN; ++i){ //素数打表
if(!check[i]){
for(int j = i; j < MAXN; j += i){
check[j] = true;
cnt[i] += a[j];
}
}
}
} int main(){
std::ios::sync_with_stdio(false);
int i, j, t, k, u, v, numCase = ;
int n, q, x, y;
cin >> n;
for(i = ; i <= n; ++i){
cin >> x;
++a[x];
}
init_prime();
for(i = ; i < MAXN; ++i){
cnt[i] += cnt[i - ]; //作累计和以节省查询时间
}
cin >> t;
while(t--){
cin >> x >> y;
checkmin(x, );
checkmin(y, );
cout << cnt[y] - cnt[x - ] << endl;
}
return ;
}

CodeForces 385C Bear and Prime Numbers 素数打表的更多相关文章

  1. Codeforces 385C Bear and Prime Numbers(素数预处理)

    Codeforces 385C Bear and Prime Numbers 其实不是多值得记录的一道题,通过快速打素数表,再做前缀和的预处理,使查询的复杂度变为O(1). 但是,我在统计数组中元素出 ...

  2. Codeforces 385C Bear and Prime Numbers

    题目链接:Codeforces 385C Bear and Prime Numbers 这题告诉我仅仅有询问没有更新通常是不用线段树的.或者说还有比线段树更简单的方法. 用一个sum数组记录前n项和, ...

  3. Codeforces 385C - Bear and Prime Numbers(素数筛+前缀和+hashing)

    385C - Bear and Prime Numbers 思路:记录数组中1-1e7中每个数出现的次数,然后用素数筛看哪些能被素数整除,并加到记录该素数的数组中,然后1-1e7求一遍前缀和. 代码: ...

  4. CodeForces - 385C Bear and Prime Numbers (埃氏筛的美妙用法)

    Recently, the bear started studying data structures and faced the following problem. You are given a ...

  5. codeforces 385C Bear and Prime Numbers 预处理DP

    题目链接:http://codeforces.com/problemset/problem/385/C 题目大意:给定n个数与m个询问区间,问每个询问区间中的所有素数在这n个数中被能整除的次数之和 解 ...

  6. UVA 10539 - Almost Prime Numbers 素数打表

    Almost prime numbers are the non-prime numbers which are divisible by only a single prime number.In ...

  7. POJ 2739 Sum of Consecutive Prime Numbers(素数)

    POJ 2739 Sum of Consecutive Prime Numbers(素数) http://poj.org/problem? id=2739 题意: 给你一个10000以内的自然数X.然 ...

  8. CF385C Bear and Prime Numbers 数学

    题意翻译 给你一串数列a.对于一个质数p,定义函数f(p)=a数列中能被p整除的数的个数.给出m组询问l,r,询问[l,r]区间内所有素数p的f(p)之和. 题目描述 Recently, the be ...

  9. HDOJ(HDU) 2138 How many prime numbers(素数-快速筛选没用上、)

    Problem Description Give you a lot of positive integers, just to find out how many prime numbers the ...

随机推荐

  1. (Problem 73)Counting fractions in a range

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  2. 高质量程序设计指南C/C++语言——内存管理

    • free()和delete只是把指针所指的内容给释放掉,并没有把指针本身删掉.指针被free()或delete以后其地址仍然不变(不等于NULL),只是该地址对应的内存是垃圾——p成了野指针.如果 ...

  3. 【转】IOS 输入框被键盘遮盖的解决方法

    做IOS开发时,难免会遇到输入框被键盘遮掩的问题.上网上搜索了很多相关的解决方案,看了很多,但是由衷的觉得太麻烦了. 有的解决方案是将视图上的所有的东西都添加到一个滚动视图对象( UIScrollVi ...

  4. IOS 表视图(UITableVIew)的使用方法(3)名单的索引显示

    当数据量特别大时,简单地以role进行分段,对实际查找的效率提升并不大.就像上一节开头所说,开发者可以根据球员名字的首字母进行分段,且分成26段.由于段数较多,可以使用UITableView的索引机制 ...

  5. DAO以及获取自动生成主键值

    package com.alibaba.sql; import java.lang.reflect.InvocationTargetException; import java.sql.Connect ...

  6. Java Socket 入门2 Java与C# Socket 通信

    参考http://www.cnblogs.com/cdtarena/p/3184313.html 这里以C#作为服务端  其实不论C#是服务端还是客户端都不是主要问题 毕竟不论客户端还是服务端 都包括 ...

  7. VC++ win32 多线程 一边画圆一边画矩形

    // WinThreadTest.cpp : Defines the entry point for the application. // #include "stdafx.h" ...

  8. QT不让windows休眠的方法

    对于一些Windows应用程序,必须要保证os不能休眠才能有效工作,如迅雷下载软件,如果os进入休眠,则会导致网络不正常,从而导致不能下载东西.那木有没有1种机制,当打开软件的时候,就自动将os设为不 ...

  9. nodejs partials 分布视图

    在学习<node.js开发指南>nodejs partials view时,怎么都不能运行成功.经过艰苦探索,终于成功了,分享一下. Cause: nodejs 的express 版本之间 ...

  10. iOS开发之第三方登录QQ -- 史上最全最新第三方登录QQ方式实现

    项目地址 :  https://github.com/zhonggaorong/QQLoginDemo/tree/master 最新版本的qq登录实现步骤实现: 1. 首先,你需要去向腾讯申请账号. ...