ZOJ 1698 (最大流入门)
Power NetworkTime Limit:5000MS Memory Limit:32768KB 64bit IO Format:%lld
& %llu
Description
A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <=
c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line
(u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=sum of c(u) be the power consumed in the net. The problem is to compute the maximum value of Con.

name=0000%2F1734%2F1734-2.gif" alt="" height="195" width="396">
An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed
is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.
There are several data sets in the input text file. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data
triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc
doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input.
Input data terminate with an end of file and are correct.
For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.
The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The
second data set encodes the network from figure 1.
Sample Input
2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4
Sample Output
15
6
EK临接矩阵版:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=150;//点数的最大值
const int MAXM=20500;//边数的最大值
int n;
int flow[MAXN][MAXN],cap[MAXN][MAXN],p[MAXN],a[MAXN];
void Init()
{
memset(flow,0,sizeof flow);
memset(cap,0,sizeof cap);
}
int Ek(int s,int t){
queue<int>q;
int f=0;
while(1){
memset(a,0,sizeof a);
while(!q.empty())q.pop();
a[s]=INF;
q.push(s);
while(!q.empty()){
int u=q.front();q.pop();
for(int v=0;v<=n+1;v++)if(!a[v]&&cap[u][v]>flow[u][v]){
q.push(v);
p[v]=u;
a[v]=min(a[u],cap[u][v]-flow[u][v]);
}
}
if(a[t]==0)return f;
int x=t;
while(x!=s){
flow[p[x]][x]+=a[t];
flow[x][p[x]]-=a[t];
x=p[x];
}
f+=a[t];
}
return f;
}
void addedge(int u,int v,int w){
cap[u][v]+=w;
}
int main()//多源多汇点。在前面加个源点,后面加个汇点,转成单源单汇点
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int start,end;
int np,nc,m;
int u,v,z;
while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
{
Init();
while(m--)
{
while(getchar()!='(');
scanf("%d,%d)%d",&u,&v,&z);
u++;v++;
addedge(u,v,z);
}
while(np--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(0,u,z);
}
while(nc--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(u,n+1,z);
}
start=0;
end=n+1;
int ans=Ek(start,end);
cout<<ans<<endl;
}
return 0;
}
EK临接表版:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=150;//点数的最大值
const int MAXM=20500;//边数的最大值
int n,a[MAXN],p[MAXN];
struct Edge
{
int from,to,cap,flow;
};
std::vector<Edge>edges;
std::vector<int>G[MAXN];
void addedge(int u,int v,int w){
edges.push_back((Edge){u,v,w,0});
edges.push_back((Edge){v,u,0,0});
int m=edges.size();
G[u].push_back(m-2);
G[v].push_back(m-1);
}
int Ek(int s,int t){
queue<int>q;
int f=0;
while(1){
memset(a,0,sizeof a);
a[s]=INF;
q.push(s);
while(!q.empty()){
int u=q.front();q.pop();
for(int i=0;i<G[u].size();i++){
Edge &e=edges[G[u][i]];
if(!a[e.to]&&e.cap>e.flow){
q.push(e.to);
p[e.to]=G[u][i];
a[e.to]=min(a[u],e.cap-e.flow);
}
}
}
if(a[t]==0)return f;
int x=t;
while(x!=s){
edges[p[x]].flow+=a[t];
edges[p[x]^1].flow-=a[t];
x=edges[p[x]].from;
}
f+=a[t];
}
return f;
}
int main()//多源多汇点,在前面加个源点。后面加个汇点。转成单源单汇点
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int start,end;
int np,nc,m;
int u,v,z;
while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
{
edges.clear();
for(int i=0;i<=n+1;i++)G[i].clear();
while(m--)
{
while(getchar()!='(');
scanf("%d,%d)%d",&u,&v,&z);
u++;v++;
addedge(u,v,z);
}
while(np--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(0,u,z);
}
while(nc--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(u,n+1,z);
}
start=0;
end=n+1;
int ans=Ek(start,end);
cout<<ans<<endl;
}
return 0;
}
dinic算法版:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=150;//点数的最大值
const int MAXM=20500;//边数的最大值
int n,a[MAXN],p[MAXN];
int cur[MAXN],d[MAXN],vis[MAXN];
struct Edge
{
int from,to,cap,flow;
};
std::vector<Edge>edges;
std::vector<int>G[MAXN];
void addedge(int u,int v,int w){
edges.push_back((Edge){u,v,w,0});
edges.push_back((Edge){v,u,0,0});
int m=edges.size();
G[u].push_back(m-2);
G[v].push_back(m-1);
}
int bfs(int s,int t)
{
memset(vis,0,sizeof vis);
queue<int>q;
q.push(s);
vis[s]=1;
d[s]=0;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=0;i<G[u].size();i++){
Edge &e=edges[G[u][i]];
if(!vis[e.to]&&e.cap>e.flow){
q.push(e.to);
vis[e.to]=1;
d[e.to]=d[u]+1;
}
}
}
return vis[t];
}
int dfs(int x,int a,int t){
if(x==t||a==0)return a;
int flow=0,f=0;
for(int &i=cur[x];i<G[x].size();++i){
Edge &e=edges[G[x][i]];
if(d[e.to]==d[x]+1&&(f=dfs(e.to,min(a,e.cap-e.flow),t))>0){
e.flow+=f;
edges[G[x][i]^1].flow-=f;
flow+=f;
a-=f;
if(a==0)break;
}
}
return flow;
}
int dinic(int s,int t){
int flow=0;
while(bfs(s,t)){
memset(cur,0,sizeof cur);
flow+=dfs(s,INF,t);
}
return flow;
}
int main()//多源多汇点。在前面加个源点,后面加个汇点。转成单源单汇点
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int start,end;
int np,nc,m;
int u,v,z;
while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
{
edges.clear();
for(int i=0;i<=n+1;i++)G[i].clear();
while(m--)
{
while(getchar()!='(');
scanf("%d,%d)%d",&u,&v,&z);
u++;v++;
addedge(u,v,z);
}
while(np--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(0,u,z);
}
while(nc--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(u,n+1,z);
}
start=0;
end=n+1;
int ans=dinic(start,end);
cout<<ans<<endl;
}
return 0;
}
ISAP版:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=150;
int n,num[MAXN],p[MAXN];
int cur[MAXN],d[MAXN],vis[MAXN];
struct Edge
{
int from,to,cap,flow;
};
std::vector<Edge>edges;
std::vector<int>G[MAXN];
void addedge(int u,int v,int w){
edges.push_back((Edge){u,v,w,0});
edges.push_back((Edge){v,u,0,0});
int m=edges.size();
G[u].push_back(m-2);
G[v].push_back(m-1);
}
int bfs(int s,int t)
{
memset(vis,0,sizeof vis);
queue<int>q;
q.push(s);
vis[s]=1;
//memset(d,0,sizeof d);
d[t]=d[s]=0;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=0;i<G[u].size();i++){
Edge &e=edges[G[u][i]];
if(!vis[e.to]){
q.push(e.to);
vis[e.to]=1;
d[e.to]=d[u]+1;
}
}
}
return vis[t];
}
int Augment(int s,int t){
int x=t,a=INF;
while(x!=s){
Edge &e=edges[p[x]];
a=min(a,e.cap-e.flow);
if(!a)return 0;
x=e.from;
}
x=t;
while(x!=s){
Edge &e=edges[p[x]];
e.flow+=a;
edges[p[x]^1].flow-=a;
x=e.from;
}
return a;
}
int isap(int s,int t){
int flow=0;
bfs(t,s);
memset(num,0,sizeof num);
memset(cur,0,sizeof cur);
for(int i=0;i<=n+1;i++)++num[d[i]];
int x=s;
while(d[s]<n+2)
{
if(x==t){
flow+=Augment(s,t);
x=s;
}
bool ok=false;
for(int i=cur[x];i<G[x].size();++i){
Edge &e=edges[G[x][i]];
if(e.cap>e.flow&&d[x]==d[e.to]+1){
ok=true;
cur[x]=i;
p[e.to]=G[x][i];
x=e.to;
break;
}
}
if(!ok){
int m=n+1;
for(int i=0;i<G[x].size();i++)
{
Edge &e=edges[G[x][i]];
if(e.cap>e.flow){
m=min(m,d[e.to]);
}
}
if(--num[d[x]]==0)break;
num[d[x]=m+1]++;
cur[x]=0;
if(x!=s)x=edges[p[x]].from;
}
}
return flow;
}
int main()//多源多汇点,在前面加个源点。后面加个汇点。转成单源单汇点
{
int start,end;
int np,nc,m;
int u,v,z;
while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
{
edges.clear();
for(int i=0;i<=n+1;i++)G[i].clear();
while(m--)
{
while(getchar()!='(');
scanf("%d,%d)%d",&u,&v,&z);
u++;v++;
addedge(u,v,z);
}
while(np--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(0,u,z);
}
while(nc--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(u,n+1,z);
}
start=0;
end=n+1;
int ans=isap(start,end);
cout<<ans<<endl;
}
return 0;
}
ZOJ 1698 (最大流入门)的更多相关文章
- 使用Guava RateLimiter限流入门到深入
前言 在开发高并发系统时有三把利器用来保护系统:缓存.降级和限流 缓存: 缓存的目的是提升系统访问速度和增大系统处理容量 降级: 降级是当服务出现问题或者影响到核心流程时,需要暂时屏蔽掉,待高峰或者问 ...
- JavaIo流入门篇之字节流基本使用。
一 基本知识了解( 字节流, 字符流, byte,bit是啥?) /* java中字节流和字符流之前有接触过,但是一直没有深入的学习和了解. 今天带着几个问题,简单的使用字节流的基本操作. 1 什么 ...
- Java-io流入门到精通详细总结
IO流:★★★★★,用于处理设备上数据. 流:可以理解数据的流动,就是一个数据流.IO流最终要以对象来体现,对象都存在IO包中. 流也进行分类: 1:输入流(读)和输出流(写). 2:因为处理的数据不 ...
- IO流入门-第十三章-File相关
/* java.io.File 1.File和流无关,不能通过该类完成文件的读写 2.File是文件和目录路径名的抽象变现形式. */ import java.io.*; public class F ...
- IO流入门-第十二章-ObjectInputStream_ObjectOutputStream
DataInputStream和DataOutputStream基本用法和方法示例,序列化和反序列化 import java.io.Serializable; //该接口是一个“可序列化”的 ,没有任 ...
- IO流入门-第十一章-PrintStream_PrintWriter
DataInputStream和DataOutputStream基本用法和方法示例 /* java.io.PrintStream:标准的输出流,默认打印到控制台,以字节方式 java.io.Print ...
- IO流入门-第十章-DataInputStream_DataOutputStream
DataInputStream和DataOutputStream基本用法和方法示例 /* java.io.DataOutputStream 数据字节输出流,带着类型写入 可以将内存中的“int i = ...
- IO流入门-第九章-BufferedReader_BufferedWriter复制
利用BufferedReader和BufferedWriter进行复制粘贴 import java.io.*; public class BufferedReader_BufferedWriterCo ...
- IO流入门-第八章-BufferedWriter
BufferedWriter基本用法和方法示例 import java.io.*; public class BufferedWriterTest01 { public static void mai ...
随机推荐
- css3——webkit-animation动画
-webkit-animation:仍旧是一个复合属性, -webkit-animation: name duration timing-function delay iteration_coun ...
- jenkins 配置安全邮件
Jenkins网页设置界面只支持SSL协议 ,对于STARTTLS协议,需要修改jenkins的配置文件去支持基于TLS的SMTP认证 1.修改jenkins配置文件 打开jenkins配置文件/et ...
- 通过SocketLog快速分析php程序
转载自http://www.thinkphp.cn/topic/10846.html 正在运行的API有bug,不能var_dump进行调试,因为会影响client的调用.这时候用SocketLog最 ...
- J2SE知识点摘记(十九)
Collection 1.2.1 常用方法 Collection 接口用于表示任何对象或元素组.想要尽可能以常规方式处理一组元素时,就使用这一接口.Collection 在前面的大图也 ...
- centos 6.7 perl 版本 This is perl 5, version 22 安装DBI DBD
<pre name="code" class="cpp">centos 6.7 perl 版本 This is perl 5, version 22 ...
- js类方法,对象方法,原型的理解(转)
function People(name) { this.name=name; //对象方法 this.Introduce=function(){ alert("My name is &qu ...
- Handlebarsjs学习笔记
handlebarsjs官网(http://handlebarsjs.com/) 1.引入模板 在html页面中添加 <script id="entry-template&q ...
- thunk的主要用法
主要用法目前用的多的就三种; thunk.all 并发 thunk.sql 同步 thunk.race 最先返回的进入结果输出 前两个返回的结果都是数组,最后一个返回的是对象: thunk的链式调用没 ...
- findOneAndUpdate的用法详解
Fragment.findOneAndUpdate({_id:id}, {$set: datas}, {upsert:true, 'new':true}).populate('ads').exec(f ...
- 【HTML5】DOMContentLoaded事件
这个事件是从HTML中的onLoad的延伸而来的,当一个页面完成加载时,初始化脚本的方法是使用load事件,但这个类函数的缺点是仅在所有资源都完全加载后才被触发,这有时会导致比较严重的延迟,开发人员随 ...