Power NetworkTime Limit:5000MS    Memory Limit:32768KB    64bit IO Format:%lld
& %llu

Appoint description:

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <=
c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line
(u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=sum of c(u) be the power consumed in the net. The problem is to compute the maximum value of Con.

name=0000%2F1734%2F1734-2.gif" alt="" height="195" width="396">

An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed
is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

There are several data sets in the input text file. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data
triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc
doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input.
Input data terminate with an end of file and are correct.

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The
second data set encodes the network from figure 1.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20

7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7

(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5

(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15

6

EK临接矩阵版:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=150;//点数的最大值
const int MAXM=20500;//边数的最大值
int n;
int flow[MAXN][MAXN],cap[MAXN][MAXN],p[MAXN],a[MAXN];
void Init()
{
memset(flow,0,sizeof flow);
memset(cap,0,sizeof cap);
}
int Ek(int s,int t){
queue<int>q;
int f=0;
while(1){
memset(a,0,sizeof a);
while(!q.empty())q.pop();
a[s]=INF;
q.push(s);
while(!q.empty()){
int u=q.front();q.pop();
for(int v=0;v<=n+1;v++)if(!a[v]&&cap[u][v]>flow[u][v]){
q.push(v);
p[v]=u;
a[v]=min(a[u],cap[u][v]-flow[u][v]);
}
}
if(a[t]==0)return f;
int x=t;
while(x!=s){
flow[p[x]][x]+=a[t];
flow[x][p[x]]-=a[t];
x=p[x];
}
f+=a[t];
}
return f;
}
void addedge(int u,int v,int w){
cap[u][v]+=w;
}
int main()//多源多汇点。在前面加个源点,后面加个汇点,转成单源单汇点
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int start,end;
int np,nc,m;
int u,v,z;
while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
{
Init();
while(m--)
{
while(getchar()!='(');
scanf("%d,%d)%d",&u,&v,&z);
u++;v++;
addedge(u,v,z);
}
while(np--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(0,u,z);
}
while(nc--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(u,n+1,z);
}
start=0;
end=n+1;
int ans=Ek(start,end);
cout<<ans<<endl;
}
return 0;
}

EK临接表版:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=150;//点数的最大值
const int MAXM=20500;//边数的最大值
int n,a[MAXN],p[MAXN];
struct Edge
{
int from,to,cap,flow;
};
std::vector<Edge>edges;
std::vector<int>G[MAXN];
void addedge(int u,int v,int w){
edges.push_back((Edge){u,v,w,0});
edges.push_back((Edge){v,u,0,0});
int m=edges.size();
G[u].push_back(m-2);
G[v].push_back(m-1);
}
int Ek(int s,int t){
queue<int>q;
int f=0;
while(1){
memset(a,0,sizeof a);
a[s]=INF;
q.push(s);
while(!q.empty()){
int u=q.front();q.pop();
for(int i=0;i<G[u].size();i++){
Edge &e=edges[G[u][i]];
if(!a[e.to]&&e.cap>e.flow){
q.push(e.to);
p[e.to]=G[u][i];
a[e.to]=min(a[u],e.cap-e.flow);
}
}
}
if(a[t]==0)return f;
int x=t;
while(x!=s){
edges[p[x]].flow+=a[t];
edges[p[x]^1].flow-=a[t];
x=edges[p[x]].from;
}
f+=a[t];
}
return f;
}
int main()//多源多汇点,在前面加个源点。后面加个汇点。转成单源单汇点
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int start,end;
int np,nc,m;
int u,v,z;
while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
{
edges.clear();
for(int i=0;i<=n+1;i++)G[i].clear();
while(m--)
{
while(getchar()!='(');
scanf("%d,%d)%d",&u,&v,&z);
u++;v++;
addedge(u,v,z);
}
while(np--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(0,u,z);
}
while(nc--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(u,n+1,z);
}
start=0;
end=n+1;
int ans=Ek(start,end);
cout<<ans<<endl;
}
return 0;
}

dinic算法版:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=150;//点数的最大值
const int MAXM=20500;//边数的最大值
int n,a[MAXN],p[MAXN];
int cur[MAXN],d[MAXN],vis[MAXN];
struct Edge
{
int from,to,cap,flow;
};
std::vector<Edge>edges;
std::vector<int>G[MAXN];
void addedge(int u,int v,int w){
edges.push_back((Edge){u,v,w,0});
edges.push_back((Edge){v,u,0,0});
int m=edges.size();
G[u].push_back(m-2);
G[v].push_back(m-1);
}
int bfs(int s,int t)
{
memset(vis,0,sizeof vis);
queue<int>q;
q.push(s);
vis[s]=1;
d[s]=0;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=0;i<G[u].size();i++){
Edge &e=edges[G[u][i]];
if(!vis[e.to]&&e.cap>e.flow){
q.push(e.to);
vis[e.to]=1;
d[e.to]=d[u]+1;
}
}
}
return vis[t];
}
int dfs(int x,int a,int t){
if(x==t||a==0)return a;
int flow=0,f=0;
for(int &i=cur[x];i<G[x].size();++i){
Edge &e=edges[G[x][i]];
if(d[e.to]==d[x]+1&&(f=dfs(e.to,min(a,e.cap-e.flow),t))>0){
e.flow+=f;
edges[G[x][i]^1].flow-=f;
flow+=f;
a-=f;
if(a==0)break;
}
}
return flow;
}
int dinic(int s,int t){
int flow=0;
while(bfs(s,t)){
memset(cur,0,sizeof cur);
flow+=dfs(s,INF,t);
}
return flow;
}
int main()//多源多汇点。在前面加个源点,后面加个汇点。转成单源单汇点
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int start,end;
int np,nc,m;
int u,v,z;
while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
{
edges.clear();
for(int i=0;i<=n+1;i++)G[i].clear();
while(m--)
{
while(getchar()!='(');
scanf("%d,%d)%d",&u,&v,&z);
u++;v++;
addedge(u,v,z);
}
while(np--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(0,u,z);
}
while(nc--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(u,n+1,z);
}
start=0;
end=n+1;
int ans=dinic(start,end);
cout<<ans<<endl;
}
return 0;
}

ISAP版:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=150;
int n,num[MAXN],p[MAXN];
int cur[MAXN],d[MAXN],vis[MAXN];
struct Edge
{
int from,to,cap,flow;
};
std::vector<Edge>edges;
std::vector<int>G[MAXN];
void addedge(int u,int v,int w){
edges.push_back((Edge){u,v,w,0});
edges.push_back((Edge){v,u,0,0});
int m=edges.size();
G[u].push_back(m-2);
G[v].push_back(m-1);
}
int bfs(int s,int t)
{
memset(vis,0,sizeof vis);
queue<int>q;
q.push(s);
vis[s]=1;
//memset(d,0,sizeof d);
d[t]=d[s]=0;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=0;i<G[u].size();i++){
Edge &e=edges[G[u][i]];
if(!vis[e.to]){
q.push(e.to);
vis[e.to]=1;
d[e.to]=d[u]+1;
}
}
}
return vis[t];
}
int Augment(int s,int t){
int x=t,a=INF;
while(x!=s){
Edge &e=edges[p[x]];
a=min(a,e.cap-e.flow);
if(!a)return 0;
x=e.from;
}
x=t;
while(x!=s){
Edge &e=edges[p[x]];
e.flow+=a;
edges[p[x]^1].flow-=a;
x=e.from;
}
return a;
}
int isap(int s,int t){
int flow=0;
bfs(t,s);
memset(num,0,sizeof num);
memset(cur,0,sizeof cur);
for(int i=0;i<=n+1;i++)++num[d[i]];
int x=s;
while(d[s]<n+2)
{
if(x==t){
flow+=Augment(s,t);
x=s;
}
bool ok=false;
for(int i=cur[x];i<G[x].size();++i){
Edge &e=edges[G[x][i]];
if(e.cap>e.flow&&d[x]==d[e.to]+1){
ok=true;
cur[x]=i;
p[e.to]=G[x][i];
x=e.to;
break;
}
}
if(!ok){
int m=n+1;
for(int i=0;i<G[x].size();i++)
{
Edge &e=edges[G[x][i]];
if(e.cap>e.flow){
m=min(m,d[e.to]);
}
}
if(--num[d[x]]==0)break;
num[d[x]=m+1]++;
cur[x]=0;
if(x!=s)x=edges[p[x]].from;
}
}
return flow;
}
int main()//多源多汇点,在前面加个源点。后面加个汇点。转成单源单汇点
{
int start,end;
int np,nc,m;
int u,v,z;
while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
{
edges.clear();
for(int i=0;i<=n+1;i++)G[i].clear();
while(m--)
{
while(getchar()!='(');
scanf("%d,%d)%d",&u,&v,&z);
u++;v++;
addedge(u,v,z);
}
while(np--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(0,u,z);
}
while(nc--)
{
while(getchar()!='(');
scanf("%d)%d",&u,&z);
u++;
addedge(u,n+1,z);
}
start=0;
end=n+1;
int ans=isap(start,end);
cout<<ans<<endl;
}
return 0;
}

ZOJ 1698 (最大流入门)的更多相关文章

  1. 使用Guava RateLimiter限流入门到深入

    前言 在开发高并发系统时有三把利器用来保护系统:缓存.降级和限流 缓存: 缓存的目的是提升系统访问速度和增大系统处理容量 降级: 降级是当服务出现问题或者影响到核心流程时,需要暂时屏蔽掉,待高峰或者问 ...

  2. JavaIo流入门篇之字节流基本使用。

    一 基本知识了解(  字节流, 字符流, byte,bit是啥?) /* java中字节流和字符流之前有接触过,但是一直没有深入的学习和了解. 今天带着几个问题,简单的使用字节流的基本操作. 1 什么 ...

  3. Java-io流入门到精通详细总结

    IO流:★★★★★,用于处理设备上数据. 流:可以理解数据的流动,就是一个数据流.IO流最终要以对象来体现,对象都存在IO包中. 流也进行分类: 1:输入流(读)和输出流(写). 2:因为处理的数据不 ...

  4. IO流入门-第十三章-File相关

    /* java.io.File 1.File和流无关,不能通过该类完成文件的读写 2.File是文件和目录路径名的抽象变现形式. */ import java.io.*; public class F ...

  5. IO流入门-第十二章-ObjectInputStream_ObjectOutputStream

    DataInputStream和DataOutputStream基本用法和方法示例,序列化和反序列化 import java.io.Serializable; //该接口是一个“可序列化”的 ,没有任 ...

  6. IO流入门-第十一章-PrintStream_PrintWriter

    DataInputStream和DataOutputStream基本用法和方法示例 /* java.io.PrintStream:标准的输出流,默认打印到控制台,以字节方式 java.io.Print ...

  7. IO流入门-第十章-DataInputStream_DataOutputStream

    DataInputStream和DataOutputStream基本用法和方法示例 /* java.io.DataOutputStream 数据字节输出流,带着类型写入 可以将内存中的“int i = ...

  8. IO流入门-第九章-BufferedReader_BufferedWriter复制

    利用BufferedReader和BufferedWriter进行复制粘贴 import java.io.*; public class BufferedReader_BufferedWriterCo ...

  9. IO流入门-第八章-BufferedWriter

    BufferedWriter基本用法和方法示例 import java.io.*; public class BufferedWriterTest01 { public static void mai ...

随机推荐

  1. python 日期、时间戳转换

    获取当前日期: from datetime import datetime IN:datetime.now() OUT:datetime(2016,10,19,6,51,21,72341) 转化为字符 ...

  2. Scala中的apply实战详解

    apply可以应用与Object和Class,单调用情景不一样. 通过Array(1,2,3,4,5) 可以调用到Array中的.appy方法.你可以看源码是如何实现apply的. 类中的appy比较 ...

  3. 迁移到gitbook

    现在要迁移到gitbook啦, 一些note类分享就只在gitbook发了, 其他一些比较长的分享会第一时间发到gitbook,但也会在这边同步 我的gitbook

  4. C++默认参数与函数重载 注意事项

    一.默认参数在C++中,可以为参数指定默认值.在函数调用时没有指定与形参相对应的实参时, 就自动使用默认参数. 默认参数的语法与使用:(1)在函数声明或定义时,直接对参数赋值.这就是默认参数:(2)在 ...

  5. 4.跟我学solr---SolrRequestHandler具体解释

    概述 我们在使用solr admin在做查询的时候,能够看到Request-Hander(qt)输入栏中有"/select"这样一个uri.当我们点击查询的时候所发起的请求是这种. ...

  6. log file sync等待超高一例

    这是3月份某客户的情况,原因是server硬件故障后进行更换之后,业务翻译偶尔出现提交缓慢的情况.我们先来看下awr的情况. 我们能够看到,该系统的load profile信息事实上并不高,每秒才21 ...

  7. C#程序设计六大原则记录

    本文目的在于记录,方便以后的回顾 http://www.uml.org.cn/sjms/201211023.asp 设计模式六大原则(1):单一职责原则 定义:不要存在多于一个导致类变更的原因.通俗的 ...

  8. 设计模式- 主动对象(Active Object)

    译者注:1.对象分为主动对象和被动对象,主动对象内部包含一个线程,可以自动完成动作或改变状态,而一般的被动对象只能通过被其他对象调用才有所作为.在多线程程序中,经常把一个线程封装到主动对象里面.2.在 ...

  9. Table显示边框

    style="border-bottom: 1px solid #CCCCCC;"

  10. EasyUI easyui-combobox 重复发送请求

    今天在做个EasyUI easyui-combobox 下拉框动态连级的时候发现在选择一个值的时候发送了两次请求,这有点逆天呀~!!反人类~!必须和谐一开始以为是重复绑定了,重新审核了代码 确定没有~ ...