有限制的最多就K个, 所以我们处理一下这K个就行了. 其他可以任选, 贡献都是∑i (1≤i≤N), 用快速幂。

-------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
 
using namespace std;
 
typedef pair<int, int> pii;
typedef long long ll;
 
const int maxn = 100009;
const int MOD = 1000000007;
 
int N, M, K, sum, ans = 1;
pii x[maxn];
 
void Init() {
scanf("%d%d%d", &N, &M, &K);
sum = ll(N) * (1 + N) / 2 % MOD;
for(int i = 0; i < K; i++)
scanf("%d%d", &x[i].first, &x[i].second);
sort(x, x + K);
K = unique(x, x + K) - x;
}
 
int Power(int x, int t) {
int ret = 1;
for(; t; t >>= 1, x = ll(x) * x % MOD)
if(t & 1) ret = ll(x) * ret % MOD;
return ret;
}
 
void upd(int &x, int t) {
if((x -= t) < 0)
x += MOD;
}
 
void Solve() {
int p = -1, cnt = 1, c = 0;
for(int i = 0; i < K; i++) if(x[i].first == p)
upd(cnt, x[i].second);
else {
if(~p)
ans = ll(ans) * cnt % MOD;
c++;
p = x[i].first;
upd(cnt = sum, x[i].second);
}
ans = ll(ans) * cnt % MOD * Power(sum, M - c) % MOD;
printf("%d\n", ans);
}
 
int main() {
Init();
Solve();
return 0;
}

-------------------------------------------------------------------

2751: [HAOI2012]容易题(easy)

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1416  Solved: 607
[Submit][Status][Discuss]

Description

为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:
有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定义一个数列的积为该数列所有元素的乘积,要求你求出所有可能的数列的积的和 mod 1000000007的值,是不是很简单呢?呵呵!

Input

第一行三个整数n,m,k分别表示数列元素的取值范围,数列元素个数,以及已知的限制条数。
接下来k行,每行两个正整数x,y表示A[x]的值不能是y。

Output

一行一个整数表示所有可能的数列的积的和对1000000007取模后的结果。如果一个合法的数列都没有,答案输出0。

Sample Input

3 4 5
1 1
1 1
2 2
2 3
4 3

Sample Output

90
样例解释
A[1]不能取1
A[2]不能去2、3
A[4]不能取3
所以可能的数列有以下12种
数列 积
2 1 1 1 2
2 1 1 2 4
2 1 2 1 4
2 1 2 2 8
2 1 3 1 6
2 1 3 2 12
3 1 1 1 3
3 1 1 2 6
3 1 2 1 6
3 1 2 2 12
3 1 3 1 9
3 1 3 2 18

HINT

数据范围

30%的数据n<=4,m<=10,k<=10

另有20%的数据k=0

70%的数据n<=1000,m<=1000,k<=1000

100%的数据 n<=109,m<=109,k<=105,1<=y<=n,1<=x<=m

Source

BZOJ 2751: [HAOI2012]容易题(easy)( )的更多相关文章

  1. BZOJ 2751: [HAOI2012]容易题(easy) 数学

    2751: [HAOI2012]容易题(easy) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2751 Description 为了使 ...

  2. bzoj 2751 [HAOI2012]容易题(easy)(数学)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2751 [题意] m个位置,已知每个位置的可能取值,问所有可能情况的每个位置的乘积的和. ...

  3. 2751: [HAOI2012]容易题(easy)

    2751: [HAOI2012]容易题(easy) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1087  Solved: 477[Submit][ ...

  4. BZOJ2751: [HAOI2012]容易题(easy)

    2751: [HAOI2012]容易题(easy) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 872  Solved: 377[Submit][S ...

  5. 【bzoj2751】[HAOI2012]容易题(easy) 数论-快速幂

    [bzoj2751][HAOI2012]容易题(easy) 先考虑k=0的情况 那么第一个元素可能为[1,n] 如果序列长度为m-1时的答案是ans[m-1] 那么合并得 然后同理答案就是 k很小 而 ...

  6. 【bzoj2751】[HAOI2012]容易题(easy) 数论,简单题

    Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪 ...

  7. 2018.11.07 bzoj2751: [HAOI2012]容易题(easy)(组合数学)

    传送门 组合数学一眼题. 感觉一直做这种题智商会降低. 利用组合数学的分步计数原理. 只用关心每个数不被限制的取值的总和然后乘起来就可以了. 对于大部分数都不会被限制,总和都是n(n+1)2\frac ...

  8. BZOJ 2751 容易题(easy) 快速幂+快速乘

    2751: [HAOI2012]容易题(easy) Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:有一个数列A已知对于所有的A[i] ...

  9. [HAOI2012] 容易题[母函数]

    794. [HAOI2012] 容易题 ★★☆   输入文件:easy.in   输出文件:easy.out   简单对比时间限制:1 s   内存限制:128 MB 秒 输入:easy.in 输出: ...

随机推荐

  1. CCNA实验(1) -- 基本配置

    Ctrl+A: 到行首(Ahead)Ctrl+E: 到行尾(End)Esc+B: 回退一个单词(Back)Esc+F: 前进一个单词(Forward) 1.三种配置模式2.时间时区配置3.设置超时时间 ...

  2. POJ1185 炮兵阵地 状态压缩

    因为不知道不同的博客怎么转,就把别人的复制过来了,这个题解写的非常好,原地址为: http://hi.baidu.com/wangxustf/item/9138f80ce2292b8903ce1bc7 ...

  3. opennebula kvm attach disk

    openNebula hotPlug disk or nic 网络检索关键字(Network search keywords) 208.117.233.122 virsh attach disk vi ...

  4. asp.net 使用my97 datepicker实现前后两个日期的范围界定

    说明:日期选择后,前面的日期小于等后面的日期,后面的日期大于等于前面的日期.点点看就知道了:) - 这里将周末日期不可选.代码如下: <html xmlns="http://www.w ...

  5. JS 人民币大写

    /***** HongShijin** Me@HongShijin.com** 2014-10-15 9:13:00.00000** text/javascript***/ (function ($) ...

  6. Oracle死锁。

    oracle数据库死锁一般情况下在oracle数据库中不会.但是在程序中可以开启事物没有提交,但是程序报错我们就关了程序在重新调试.但是我们程序总是在执行 comm.ExecuteNonQuery() ...

  7. Windows 10 : 使用BCDboot恢复双系统启动

    电脑装上win10以后,立马把原来系统的启动信息删了.结果有个软件需要反激活,但是Win10已经没有Boot.ini这样的启动配置文件. 花了好多时间查找,发现这篇文章.实际操作倒是很简单.执行以下命 ...

  8. spring schema自定义

    今天看了一下分布式服务框架的那本书,于是里面提到了spring schema的自定义,于是去简单的了解了一下 参考资源:spring schema扩展: http://www.yihaomen.com ...

  9. 【LeetCode题意分析&解答】39. Combination Sum

    Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C wher ...

  10. 在python文本编辑器里如何设置Tab为4个空格

    python中缩进一般为四个空格,我总结3种常用编辑器中种如何设置Tab键为四个空格 第一种:下载python3.5时自带de 一个IDLE编辑器 在Options选项下的Configure IDLE ...