Easy Number Challenge

Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

Appoint description: 
System Crawler  (2016-04-26)

Description

Let's denote d(n) as the number of divisors of a positive integer n. You are given three integers ab and c. Your task is to calculate the following sum:

Find the sum modulo 1073741824(230).

Input

The first line contains three space-separated integers ab and c (1 ≤ a, b, c ≤ 100).

Output

Print a single integer — the required sum modulo 1073741824(230).

Sample Input

Input
2 2 2
Output
20
Input
5 6 7
Output
1520

Hint

For the first example.

  • d(1·1·1) = d(1) = 1;
  • d(1·1·2) = d(2) = 2;
  • d(1·2·1) = d(2) = 2;
  • d(1·2·2) = d(4) = 3;
  • d(2·1·1) = d(2) = 2;
  • d(2·1·2) = d(4) = 3;
  • d(2·2·1) = d(4) = 3;
  • d(2·2·2) = d(8) = 4.

So the result is 1 + 2 + 2 + 3 + 2 + 3 + 3 + 4 = 20.

题解:

d(x)代表x的因子的个数;还好i,j,k都不大,100,暴力就行,直接由于因子个数等于质因子的系数加一之积,反素数讲过,由此可得;

代码:

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<iostream>
#include<set>
#define ll long long
#define MOD 1073741824
using namespace std;
int num[];
int main()
{
int a,b,c;
int i,j,k;
while(scanf("%d%d%d",&a,&b,&c)!=EOF)
{
memset(num, , sizeof(num));
ll sum=, temp;
set<int>st;
set<int>::iterator iter;
for(i=;i<=a;i++)
{
for(j=;j<=b;j++)
{
for(k=;k<=c;k++)
{
temp = i * j * k;
ll cnt = ;
for(int p = ; p <= temp; p++){
if(temp % p == ){
int cur = ;
while(temp % p == ){
temp /= p;
cur++;
}
cnt *= cur + ;
}
}
sum += cnt;
sum %= MOD;
}
}
} printf("%lld\n",sum);
}
return ;
}

Easy Number Challenge(暴力,求因子个数)的更多相关文章

  1. 『NYIST』第八届河南省ACM竞赛训练赛[正式赛一]CF-236B. Easy Number Challenge

    B. Easy Number Challenge time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  2. Trailing Zeroes (I) LightOJ - 1028(求因子个数)

    题意: 给出一个N 求N有多少个别的进制的数有后导零 解析: 对于一个别的进制的数要转化为10进制 (我们暂且只分析二进制就好啦) An * 2^(n-1) + An-1 * 2^(n-2) + `` ...

  3. Almost All Divisors(求因子个数及思维)

    ---恢复内容开始--- We guessed some integer number xx. You are given a list of almost all its divisors. Alm ...

  4. LightOj1028 - Trailing Zeroes (I)---求因子个数

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1028 题意:给你一个数 n (1<=n<=10^12), 然后我们可以把它 ...

  5. POJ 2992 Divisors (求因子个数)

    题意:给n和k,求组合C(n,k)的因子个数. 这道题,若一开始先预处理出C[i][j]的大小,再按普通方法枚举2~sqrt(C[i][j])来求解对应的因子个数,会TLE.所以得用别的方法. 在说方 ...

  6. Number of Parallelograms(求平行四边形个数)

    Number of Parallelograms time limit per test 4 seconds memory limit per test 256 megabytes input sta ...

  7. HDU-1492-The number of divisors(约数) about Humble Numbers -求因子总数+唯一分解定理的变形

    A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, ...

  8. BZOJ3994:约数个数和(莫比乌斯反演:求[1,N]*[1,M]的矩阵的因子个数)

    Description  设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Outpu ...

  9. Divisors (求解组合数因子个数)【唯一分解定理】

    Divisors 题目链接(点击) Your task in this problem is to determine the number of divisors of Cnk. Just for ...

随机推荐

  1. pyqt动态创建一系列组件并绑定信号和槽(网友提供学习)

    # -*- coding: utf-8 -*- # python:2.x __author__ = 'Administrator' #如上图要求:创建指定多个复选框,一种是通过QT设计器Designe ...

  2. PHP冒泡排序,选择排序,插入排序

    1  冒泡排序是两个元素相互比较,找到最小值,然后冒泡到最后,代码如下:

  3. Jpeg(模拟)

    Jpeg Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status  ...

  4. NPOI之使用EXCEL模板创建报表

    因为项目中要用到服务器端创建EXCEL模板 无法直接调用EXCEL 查了下发现NPOI很方便很简单就实现了 其中走了点弯路 第一次弄的时候发现输出的值是文本不是数字型无法直接计算公式 然后又发现打开报 ...

  5. Oracle—RMAN备份(二)

    在Oracle  RMAN备份(一)中,对各种文件在RMAN中备份进行了说明, 一.备份集的复制 在RMAN 备份中,可以备份其自己的备份,即备份一个文件放在多个目录下,oralce支持最多备份四个. ...

  6. 使用INTERVAL YEAR TO MONTH类型

    Oracle Database 9i数据库引入了一种新特性,可以用来存储时间间隔.时间间隔的例子包括: ● 1年零3个月 ● 25个月 ● -3天5小时16分 ● 1天7小时 ● -56小时 注意: ...

  7. [HeadFirst-JSPServlet学习笔记][第一章:前言与概述]

    第一章 前言与概述 web服务器做什么? 答:接收客户请求,然后向客户返回结果 web客户做什么? 答:此处客户指浏览器,web客户允许用户请求服务器上的某个资源,并向用户展现请求的结果. html ...

  8. last与lastlog命令

    lastlog 列出所有用户最后登录的时间和登录终端的地址,如果此用户从来没有登录,则显示:**Never logged in**last 列出用户所有的登录时间和登录终端的地址

  9. jQuery 事件 - error() 方法

    实例 如果图像不存在,则用一段预定义的文本取代它: $("img").error(function(){ $("img").replaceWith(" ...

  10. GDI+创建Graphics对象的2种方式

      1.this.CreateGraphics()     // 调用控件的CreateGraphics()方法 2.在OnPaint事件中,PaintEventArgs类型的参数e对象的Graphi ...