转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud

Problem J
GCD Extreme (II)
Input: Standard Input

Output: Standard Output

Given the value of N, you will have to find the value of G. The definition of G is given below:

Here GCD(i,j) means the greatest common divisor of integer i and integer j.

For those who have trouble understanding summation notation, the meaning of G is given in the following code:

G=0;

for(i=1;i<N;i++)

for(j=i+1;j<=N;j++)

{

G+=gcd(i,j);

}

/*Here gcd() is a function that finds the greatest common divisor of the two input numbers*/

Input

The
input file contains at most 100 lines of inputs. Each line contains an
integer N (1<N<4000001). The meaning of N is given in the problem
statement. Input is terminated by a line containing a single zero.

Output

For
each line of input produce one line of output. This line contains the
value of G for the corresponding N. The value of G will fit in a 64-bit
signed integer.

            Sample Input     Output for Sample Input

10

100

200000

0


 

67

13015

143295493160


 


Problemsetter: Shahriar Manzoor

Special Thanks: SyedMonowarHossain

设dp[i]=gcd(1,i)+gcd(2,i)+……+gcd(i-1,i);

则ans[n]=dp[2]+dp[3]+……+dp[n].

由此问题已经转化成如何求dp[i]了,即需要求1到i-1所有数与i的gcd的和。

设k为满足gcd(x,i)=j且x<i的正整数的个数,则dp[i]=∑j*k;

同时,由于gcd(x,i)=j等价于gcd(x/j,i/j)=1,也就是phi[i/j];

接下来反过来求,那就不需要分解素因子了

 #include <iostream>
#include <cstring>
using namespace std;
typedef long long ll;
const int maxn=;
int phi[maxn];
ll dp[maxn+];
ll ans[maxn+];
void phi_table()
{
phi[]=;
for(int i=;i<maxn;i++)
{
if(!phi[i])
{
for(int j=i;j<maxn;j+=i)
{
if(!phi[j])phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
}
}
int main()
{
ios::sync_with_stdio(false);
phi_table();
for(int i=;i<maxn;i++)
{
for(int j=i*;j<maxn;j+=i)dp[j]+=(long long)i*(long long)phi[j/i];
}
ans[]=dp[];
for(int i=;i<maxn;i++)ans[i]=ans[i-]+dp[i];
int n;
while(cin>>n&&n)
{
cout<<ans[n]<<endl;
}
return ;
}

UVA 11426 GCD - Extreme (II) (欧拉函数)的更多相关文章

  1. UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...

  2. UVA 11426 GCD - Extreme (II)(欧拉函数打表 + 规律)

    Given the value of N, you will have to find the value of G. The definition of G is given below:Here ...

  3. uva 11426 GCD - Extreme (II) (欧拉函数打表)

    题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...

  4. UVA 11426 - GCD - Extreme (II) 欧拉函数-数学

    Given the value of N, you will have to find the value of G. The definition of G is given below:G =i< ...

  5. UVA 11426 GCD - Extreme (II) 欧拉函数

    分析:枚举每个数的贡献,欧拉函数筛法 #include <cstdio> #include <iostream> #include <ctime> #include ...

  6. UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)

    题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...

  7. UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)

    UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...

  8. UVA11426 GCD - Extreme (II)---欧拉函数的运用

    题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. UVA11426 GCD - Extreme (II) —— 欧拉函数

    题目链接:https://vjudge.net/problem/UVA-11426 题意: 求 ∑ gcd(i,j),其中 1<=i<j<=n . 题解:1. 欧拉函数的定义:满足 ...

  10. UVA 11426 - GCD - Extreme (II) (数论)

    UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...

随机推荐

  1. ESP8266固件修改可以控制多个IO方法

    之前在论坛上找到了一个通过ESP8266可以控制GPIO0的固件和app,但是自己做的家庭影音灯光系统是需要控制多个IO从而控制STM32.通过观看大明的视频,了解了GPIO的控制方法. 在固件的ap ...

  2. HDU 4268 Alice and Bob set用法

    题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=4268 贪心思想,用set实现平衡树,但是set有唯一性,所以要用 multiset AC代码: #i ...

  3. Liqn基础

    Linq:语言集成查询 (LINQ) 是 Visual Studio 2008 中引入的一组功能,可为 C# 和 Visual Basic 语言语法提供强大的查询功能. LINQ 引入了标准易学的数据 ...

  4. Python爬虫学习:一、相关概念与基础知识

    爬虫: 网络爬虫是一个自动提取网页的程序,它为搜索引擎从万维网上下载网页,是搜索引擎的重要组成.传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽 ...

  5. 安装apache服务器时遇到只能本地访问,局域网内其他电脑不能访问apache:

    安装apache服务器时遇到只能本地访问,局域网内其他电脑不能访问apache:1.查看selinux运行状态及关闭selinux/usr/sbin/sestatus -v文本模式关闭selinux: ...

  6. c#获取特性DescriptionAttribute的值

    int detailId = Convert.ToInt32(id); BillLoanApplyDetail model = _billLoadApplyDetail.GetBillLoanAppl ...

  7. 使用BufferedReader的时候出现的问题

    今天在使用BufferedReader的时候,出现了一个奇怪的问题 有时候换行的时候,行首会少一个字符 开始的代码是这样写的 while( br.read()!=-1 ){ String str = ...

  8. CActiveForm提示中文化

    一般情况下,yii框架的CActiveForm组建的提示是英文的,把它改成中文提示 首先在main.php配置文件中,设置 'language'=>'zh_cn'; 这样将会使得cannot b ...

  9. 关于tomcat startup.bat启动后一闪而过的问题(转)

    1.如果双击startup.bat,窗口一闪而过,可以在命令行里面启动startup.bat:  2.如果命令行里面启动startup.bat情况还是这样,就可以在bat命令后面加上pause.这样就 ...

  10. ./scripts/feeds update -a OpenWrt大招系列

    ./scripts/feeds update -a Updating feed 'packages' from 'https://github.com/openwrt/packages.git' .. ...