UVA 11426 GCD - Extreme (II) (欧拉函数)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud
Problem J
GCD Extreme (II)
Input: Standard Input
Output: Standard Output
Given the value of N, you will have to find the value of G. The definition of G is given below:

Here GCD(i,j) means the greatest common divisor of integer i and integer j.
For those who have trouble understanding summation notation, the meaning of G is given in the following code:
|
G=0; for(i=1;i<N;i++) for(j=i+1;j<=N;j++) { G+=gcd(i,j); } /*Here gcd() is a function that finds the greatest common divisor of the two input numbers*/ |
Input
The
input file contains at most 100 lines of inputs. Each line contains an
integer N (1<N<4000001). The meaning of N is given in the problem
statement. Input is terminated by a line containing a single zero.
Output
For
each line of input produce one line of output. This line contains the
value of G for the corresponding N. The value of G will fit in a 64-bit
signed integer.
Sample Input Output for Sample Input
|
10 100 200000 0
|
67 13015 143295493160
|
Problemsetter: Shahriar Manzoor
Special Thanks: SyedMonowarHossain
设dp[i]=gcd(1,i)+gcd(2,i)+……+gcd(i-1,i);
则ans[n]=dp[2]+dp[3]+……+dp[n].
由此问题已经转化成如何求dp[i]了,即需要求1到i-1所有数与i的gcd的和。
设k为满足gcd(x,i)=j且x<i的正整数的个数,则dp[i]=∑j*k;
同时,由于gcd(x,i)=j等价于gcd(x/j,i/j)=1,也就是phi[i/j];
接下来反过来求,那就不需要分解素因子了
#include <iostream>
#include <cstring>
using namespace std;
typedef long long ll;
const int maxn=;
int phi[maxn];
ll dp[maxn+];
ll ans[maxn+];
void phi_table()
{
phi[]=;
for(int i=;i<maxn;i++)
{
if(!phi[i])
{
for(int j=i;j<maxn;j+=i)
{
if(!phi[j])phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
}
}
int main()
{
ios::sync_with_stdio(false);
phi_table();
for(int i=;i<maxn;i++)
{
for(int j=i*;j<maxn;j+=i)dp[j]+=(long long)i*(long long)phi[j/i];
}
ans[]=dp[];
for(int i=;i<maxn;i++)ans[i]=ans[i-]+dp[i];
int n;
while(cin>>n&&n)
{
cout<<ans[n]<<endl;
}
return ;
}
UVA 11426 GCD - Extreme (II) (欧拉函数)的更多相关文章
- UVA 11426 GCD - Extreme (II) (欧拉函数+筛法)
题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中 ...
- UVA 11426 GCD - Extreme (II)(欧拉函数打表 + 规律)
Given the value of N, you will have to find the value of G. The definition of G is given below:Here ...
- uva 11426 GCD - Extreme (II) (欧拉函数打表)
题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...
- UVA 11426 - GCD - Extreme (II) 欧拉函数-数学
Given the value of N, you will have to find the value of G. The definition of G is given below:G =i< ...
- UVA 11426 GCD - Extreme (II) 欧拉函数
分析:枚举每个数的贡献,欧拉函数筛法 #include <cstdio> #include <iostream> #include <ctime> #include ...
- UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)
题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...
- UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)
UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...
- UVA11426 GCD - Extreme (II)---欧拉函数的运用
题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA11426 GCD - Extreme (II) —— 欧拉函数
题目链接:https://vjudge.net/problem/UVA-11426 题意: 求 ∑ gcd(i,j),其中 1<=i<j<=n . 题解:1. 欧拉函数的定义:满足 ...
- UVA 11426 - GCD - Extreme (II) (数论)
UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...
随机推荐
- SDOI HH的项链 HEOI采花
题目大意: SDOI求一个区间内只出现一次的数的个数.多组询问. HEOI 求一个区间内出现至少两次的数的个数.多组询问. SDOI HH'neckplace如果每次询问都是1..r的话,那么我们只要 ...
- OpenSuse13.2硬盘安装
直接参考文章:OpenSuse硬盘安装 补充: Win7引导Grub4dos时,本人尝试根据xp引导方式中使用boot.ini来引导,引导成功,不需要bcdedit命令,简化了引导步骤.
- HDU 3001 状压DP
有道状压题用了搜索被队友骂还能不能好好训练了,, hdu 3001 经典的状压dp 大概题意..有n个城市 m个道路 成了一个有向图.n<=10: 然后这个人想去旅行.有个超人开始可以把他扔到 ...
- iframe与frameset有什么区别
frame,iframe,frameset 的区别 <FRAMESET> <FRAME><NOFRAMES><IFRAME>欲明白本篇[HTML剖析]之 ...
- Masonry + Ajax 实现无限刷新瀑布流
效果就如我的个人站yooao.cc,把我实现的思路分享给大家. Masonry渲染页面如果有图片时需要imagesLoaded辅助,不然有可能会造成布局重叠. 一个大体的思路:前端取得最后一篇文章的i ...
- jquery实现导航栏头部点击变换颜色
实现效果如下: 话不多说直接上代码: <!DOCTYPE html> <html lang="en"> <head> <meta char ...
- 开心菜鸟学习系列学习笔记------------nodejs util公共函数
global 在最外层定义的变量: 全局对象的属性: 隐式定义的变量(未定义直接赋值的变量). 一.process process 是一个全局变量,即 global 对象的属性 ...
- Android Development Tools 发生checkAndLoadTargetData错误
之前使用时没有出现任何问题的,我把D:\IDE\ADT\adt-bundle-windows-x86_64-20140321\eclipse目录下面的 eclipse.exe重名名为adt.exe并设 ...
- LeetCode_implement strstr ()
Implement strStr(). Returns a pointer to the first occurrence of needle in haystack, or null if need ...
- C51单片机内存优化
52本身有256B的数据存储区,如果没在意一些细节,很容易出现RAM超过128就报错的情况.现讲其问题解释如下: 最常见的是以下两种: ① 超过变量128后必须使用compact模式编译,实际的情况是 ...