POJ 3468 A Simple Problem with Integers //线段树的成段更新
| Time Limit: 5000MS | Memory Limit: 131072K | |
| Total Submissions: 59046 | Accepted: 17974 | |
| Case Time Limit: 2000MS | ||
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is
to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4
Sample Output
4
55
9
15
Hint
Source
/*
区间更新的lazy操作。
*/
#include <stdio.h> struct node
{
int l, r;
__int64 sum;
__int64 lazy; //当成段更新时,往往不用更新到单个的点。lazy操作大大节省了时间。
}tree[300005];
int h[100005];
__int64 sum; //int超限 void build(int l, int r, int n)
{
int mid;
tree[n].l = l;
tree[n].r = r;
tree[n].lazy = 0; //赋初值
if(l==r)
{
tree[n].sum = h[l];
return ;
}
mid = (l+r)/2;
build(l, mid, 2*n);
build(mid+1, r, 2*n+1); tree[n].sum = tree[2*n].sum+tree[2*n+1].sum;
}
void add(int l, int r, __int64 k, int n)
{
int mid;
if(tree[n].l==l && tree[n].r==r) //当须要更新的段 与 结点相应的段吻合时,直接把此结点的lazy值更新就可以,不须要再向下更新。
{
tree[n].lazy += k;
return;
} tree[n].sum += k*(r-l+1); //当此区间包括须要更新的区间,但不吻合时,须要向下继续查找,此时须要更新这个父节点的sum值。 mid = (tree[n].l + tree[n].r)/2;
if(r <= mid)
add(l, r, k, 2*n);
else if(l >=mid+1)
add(l, r, k, 2*n+1);
else
{
add(l, mid, k, 2*n);
add(mid+1, r, k, 2*n+1);
}
}
void qu(int l, int r, int n)
{
int mid;
if(tree[n].l==l && tree[n].r==r)
{
sum += tree[n].sum + (r-l+1)*tree[n].lazy; //当查找的段与 此结点的段吻合时,sum 值等于这个结点的sum加上lazy乘区间长度的值。
return ;
} if(tree[n].lazy!=0 && tree[n].l!=tree[n].r) //当查找区间为此结点相应区间的子集时,须要将此结点相应的lazy值下放到其子节点,并把此结点的lazy值置为0。
{
add(tree[2*n].l, tree[2*n].r, tree[n].lazy, n);
add(tree[2*n+1].l, tree[2*n+1].r, tree[n].lazy, n);
tree[n].lazy = 0;
}
mid = (tree[n].l + tree[n].r)/2; if(l >= mid+1)
qu(l, r, 2*n+1);
else if(r <= mid)
qu(l, r, 2*n);
else
{
qu(l, mid, 2*n);
qu(mid+1, r, 2*n+1);
}
} int main()
{
int n, q;
int i;
int a, b, c;
char ch[10]; scanf("%d%d", &n, &q);
for(i=1; i<=n; i++)
scanf("%d", &h[i]); build(1, n, 1);
while(q--)
{
scanf("%s", ch);
if(ch[0]=='Q')
{
scanf("%d%d", &a, &b);
sum = 0;
qu(a, b, 1);
printf("%I64d\n", sum);
}
else
{
scanf("%d%d%d", &a, &b, &c);
add(a, b, c, 1);
}
}
return 0;
}
POJ 3468 A Simple Problem with Integers //线段树的成段更新的更多相关文章
- POJ3648 A Simple Problem with Integers(线段树之成段更新。入门题)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 53169 Acc ...
- poj 3468 A Simple Problem with Integers 线段树区间加,区间查询和
A Simple Problem with Integers Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?i ...
- poj 3468 A Simple Problem with Integers 线段树区间加,区间查询和(模板)
A Simple Problem with Integers Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?i ...
- poj 3468 A Simple Problem with Integers 线段树第一次 + 讲解
A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal w ...
- [POJ] 3468 A Simple Problem with Integers [线段树区间更新求和]
A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal ...
- poj 3468 A Simple Problem with Integers (线段树区间更新求和lazy思想)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 75541 ...
- POJ 3468 A Simple Problem with Integers(线段树 成段增减+区间求和)
A Simple Problem with Integers [题目链接]A Simple Problem with Integers [题目类型]线段树 成段增减+区间求和 &题解: 线段树 ...
- poj 3468 A Simple Problem with Integers 线段树加延迟标记
A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal ...
- poj 3468 A Simple Problem with Integers 线段树区间更新
id=3468">点击打开链接题目链接 A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072 ...
随机推荐
- 程序员实用的 MySQL sql 语句
这儿只讲究实用, 程序员编程时常用到的 MySQL的 sql语句(不包括基本的 select, update, delete 等语句). 1. 添加一个用户build,并赋予所有权限的命令 gran ...
- iOS、mac开源项目及库(感谢原作者的分享)
目录 模糊效果 富文本 表相关 HUD与Toast 其他UI 其他动画 网络测试 网络聊天 Model 数据库 PDF 摄像照相视频音频处理 消息相关 消息推送服务器端 版本新API的Demo 测试及 ...
- 调用有道翻译API
前两天朋友说起NASA开放了数据API,今儿突然想起从来没用过外部提供的API,然而简单用得多的貌似是有道词典API,就像试试,本来觉得应该挺简单的,用urllib模块很快就实现了. 不过测试时才发现 ...
- <httpProtocol/>配置http协议头
Web.Config中的位置 <configuration> <system.webServer> <httpProtocol> <!--http协议内容-- ...
- windows server 2003 AD
本文转载:http://www.cnblogs.com/zfanlong1314/admin/EditPosts.aspx?opt=1 今天教大家用windows server2003系统建立Acti ...
- Swift 字符串连接
// 使用+直接相加 var i = var str = "Hello" str = str + " jinpangpang" // 可以使用这种方式连接整值 ...
- centos6.7下 编译安装MySQL5.7
centos6.7下编译安装MySQL5.7 准备工作 #-----依赖包及MySQL和boost安装包----- #yum包安装: shell> yum -y install gcc-c++ ...
- ECSTORE导航吸顶功能
ecstore导航吸顶功能,在导航父元素中加入id,如: <div id="mainNav1"></div> 在footer.html中添加以下js代码: ...
- MySQL按照汉字的拼音排序(转)
按照汉字的拼音排序,用的比较多是在人名的排序中,按照姓氏的拼音字母,从A到Z排序: 如果存储姓名的字段采用的是GBK字符集,那就好办了,因为GBK内码编码时本身就采用了拼音排序的方法(常用一级汉字37 ...
- IE6双倍margin间距解决方法
虽然现在很少有人在用ie6了,但作为前端人员,是不的不面对的问题. 在ie6中,使用float后的元素,在margin—left,这是你会发现距离和你想的不一样,其他的浏览器又是正常的,增大margi ...