A Simple Problem with Integers
Time Limit: 5000MS   Memory Limit: 131072K
Total Submissions: 59046   Accepted: 17974
Case Time Limit: 2000MS

Description

You have N integers, A1A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is
to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.

The second line contains N numbers, the initial values of A1A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.

Each of the next Q lines represents an operation.

"C a b c" means adding c to each of AaAa+1, ... , Ab. -10000 ≤ c ≤ 10000.

"Q a b" means querying the sum of AaAa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

Hint

The sums may exceed the range of 32-bit integers.

Source

/*
区间更新的lazy操作。
*/
#include <stdio.h> struct node
{
int l, r;
__int64 sum;
__int64 lazy; //当成段更新时,往往不用更新到单个的点。lazy操作大大节省了时间。
}tree[300005];
int h[100005];
__int64 sum; //int超限 void build(int l, int r, int n)
{
int mid;
tree[n].l = l;
tree[n].r = r;
tree[n].lazy = 0; //赋初值
if(l==r)
{
tree[n].sum = h[l];
return ;
}
mid = (l+r)/2;
build(l, mid, 2*n);
build(mid+1, r, 2*n+1); tree[n].sum = tree[2*n].sum+tree[2*n+1].sum;
}
void add(int l, int r, __int64 k, int n)
{
int mid;
if(tree[n].l==l && tree[n].r==r) //当须要更新的段 与 结点相应的段吻合时,直接把此结点的lazy值更新就可以,不须要再向下更新。
{
tree[n].lazy += k;
return;
} tree[n].sum += k*(r-l+1); //当此区间包括须要更新的区间,但不吻合时,须要向下继续查找,此时须要更新这个父节点的sum值。 mid = (tree[n].l + tree[n].r)/2;
if(r <= mid)
add(l, r, k, 2*n);
else if(l >=mid+1)
add(l, r, k, 2*n+1);
else
{
add(l, mid, k, 2*n);
add(mid+1, r, k, 2*n+1);
}
}
void qu(int l, int r, int n)
{
int mid;
if(tree[n].l==l && tree[n].r==r)
{
sum += tree[n].sum + (r-l+1)*tree[n].lazy; //当查找的段与 此结点的段吻合时,sum 值等于这个结点的sum加上lazy乘区间长度的值。
return ;
} if(tree[n].lazy!=0 && tree[n].l!=tree[n].r) //当查找区间为此结点相应区间的子集时,须要将此结点相应的lazy值下放到其子节点,并把此结点的lazy值置为0。
{
add(tree[2*n].l, tree[2*n].r, tree[n].lazy, n);
add(tree[2*n+1].l, tree[2*n+1].r, tree[n].lazy, n);
tree[n].lazy = 0;
}
mid = (tree[n].l + tree[n].r)/2; if(l >= mid+1)
qu(l, r, 2*n+1);
else if(r <= mid)
qu(l, r, 2*n);
else
{
qu(l, mid, 2*n);
qu(mid+1, r, 2*n+1);
}
} int main()
{
int n, q;
int i;
int a, b, c;
char ch[10]; scanf("%d%d", &n, &q);
for(i=1; i<=n; i++)
scanf("%d", &h[i]); build(1, n, 1);
while(q--)
{
scanf("%s", ch);
if(ch[0]=='Q')
{
scanf("%d%d", &a, &b);
sum = 0;
qu(a, b, 1);
printf("%I64d\n", sum);
}
else
{
scanf("%d%d%d", &a, &b, &c);
add(a, b, c, 1);
}
}
return 0;
}

POJ 3468 A Simple Problem with Integers //线段树的成段更新的更多相关文章

  1. POJ3648 A Simple Problem with Integers(线段树之成段更新。入门题)

    A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 53169 Acc ...

  2. poj 3468 A Simple Problem with Integers 线段树区间加,区间查询和

    A Simple Problem with Integers Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?i ...

  3. poj 3468 A Simple Problem with Integers 线段树区间加,区间查询和(模板)

    A Simple Problem with Integers Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?i ...

  4. poj 3468 A Simple Problem with Integers 线段树第一次 + 讲解

    A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal w ...

  5. [POJ] 3468 A Simple Problem with Integers [线段树区间更新求和]

    A Simple Problem with Integers   Description You have N integers, A1, A2, ... , AN. You need to deal ...

  6. poj 3468 A Simple Problem with Integers (线段树区间更新求和lazy思想)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 75541   ...

  7. POJ 3468 A Simple Problem with Integers(线段树 成段增减+区间求和)

    A Simple Problem with Integers [题目链接]A Simple Problem with Integers [题目类型]线段树 成段增减+区间求和 &题解: 线段树 ...

  8. poj 3468 A Simple Problem with Integers 线段树加延迟标记

    A Simple Problem with Integers   Description You have N integers, A1, A2, ... , AN. You need to deal ...

  9. poj 3468 A Simple Problem with Integers 线段树区间更新

    id=3468">点击打开链接题目链接 A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072 ...

随机推荐

  1. android常用软件下载资源链接

    最新内容请看:http://www.androiddevtools.cn/ https://github.com/inferjay/AndroidDevTools 官方adt下载地址:http://d ...

  2. jquery之多重判断

    var appPath = getAppPath(); $(function(){ $('#addTeskDlg').window('close'); teskGrid(); }); function ...

  3. c - 冒泡/选择排序.

    #include <stdio.h> #define LEN 10 #define TRUE 1 #define FALSE 0 /* 对 10 个数进行排序 */ //选择排序法(值得注 ...

  4. RAC RMAN备份

    这篇主要介绍的是RAC 环境下的RMAN 备份. 关于Oracle 备份与恢复的一些理论知识参考我的Blog:       Oracle 备份 与 恢复 概述 http://blog.csdn.net ...

  5. C#进程与线程

    public Form1() { InitializeComponent(); } private void button1_Click(object sender, EventArgs e) { / ...

  6. C#字符串的比较

    Console.WriteLine("输入字符1"); string n1 = Console.ReadLine(); Console.WriteLine("输入字符2& ...

  7. 东软实训3-servlet基础

    Java Servlet技术的核心就是在服务端创建能响应用户请求的对象,被创建的对象习惯上称为一个Servlet对象. 编写一个创建servlet对象的类就是编写一个特殊类的子类,这个特殊的类就是ja ...

  8. ECSTORE关于后端FILTER条件的表现形式以及含义。

    cstore关于后端filter条件的表现形式以及含义如下: $FILTERARRAY= ARRAY( 'THAN'=>' > '.$VAR, 'LTHAN'=>' < '.$ ...

  9. Activiti工作流学习-----基于5.19.0版本(8)

    8.1.5 Start Event 继续上一篇的事件的分享笔记,Start Event指明该处是流程开始,至于开始事件的类型(消息到达开始,指定的事件循环开始等),定义如何开始是在开始事件圆圈图标里面 ...

  10. LeetCode_Edit Distance

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...