POJ 3468 A Simple Problem with Integers //线段树的成段更新
| Time Limit: 5000MS | Memory Limit: 131072K | |
| Total Submissions: 59046 | Accepted: 17974 | |
| Case Time Limit: 2000MS | ||
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is
to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4
Sample Output
4
55
9
15
Hint
Source
/*
区间更新的lazy操作。
*/
#include <stdio.h> struct node
{
int l, r;
__int64 sum;
__int64 lazy; //当成段更新时,往往不用更新到单个的点。lazy操作大大节省了时间。
}tree[300005];
int h[100005];
__int64 sum; //int超限 void build(int l, int r, int n)
{
int mid;
tree[n].l = l;
tree[n].r = r;
tree[n].lazy = 0; //赋初值
if(l==r)
{
tree[n].sum = h[l];
return ;
}
mid = (l+r)/2;
build(l, mid, 2*n);
build(mid+1, r, 2*n+1); tree[n].sum = tree[2*n].sum+tree[2*n+1].sum;
}
void add(int l, int r, __int64 k, int n)
{
int mid;
if(tree[n].l==l && tree[n].r==r) //当须要更新的段 与 结点相应的段吻合时,直接把此结点的lazy值更新就可以,不须要再向下更新。
{
tree[n].lazy += k;
return;
} tree[n].sum += k*(r-l+1); //当此区间包括须要更新的区间,但不吻合时,须要向下继续查找,此时须要更新这个父节点的sum值。 mid = (tree[n].l + tree[n].r)/2;
if(r <= mid)
add(l, r, k, 2*n);
else if(l >=mid+1)
add(l, r, k, 2*n+1);
else
{
add(l, mid, k, 2*n);
add(mid+1, r, k, 2*n+1);
}
}
void qu(int l, int r, int n)
{
int mid;
if(tree[n].l==l && tree[n].r==r)
{
sum += tree[n].sum + (r-l+1)*tree[n].lazy; //当查找的段与 此结点的段吻合时,sum 值等于这个结点的sum加上lazy乘区间长度的值。
return ;
} if(tree[n].lazy!=0 && tree[n].l!=tree[n].r) //当查找区间为此结点相应区间的子集时,须要将此结点相应的lazy值下放到其子节点,并把此结点的lazy值置为0。
{
add(tree[2*n].l, tree[2*n].r, tree[n].lazy, n);
add(tree[2*n+1].l, tree[2*n+1].r, tree[n].lazy, n);
tree[n].lazy = 0;
}
mid = (tree[n].l + tree[n].r)/2; if(l >= mid+1)
qu(l, r, 2*n+1);
else if(r <= mid)
qu(l, r, 2*n);
else
{
qu(l, mid, 2*n);
qu(mid+1, r, 2*n+1);
}
} int main()
{
int n, q;
int i;
int a, b, c;
char ch[10]; scanf("%d%d", &n, &q);
for(i=1; i<=n; i++)
scanf("%d", &h[i]); build(1, n, 1);
while(q--)
{
scanf("%s", ch);
if(ch[0]=='Q')
{
scanf("%d%d", &a, &b);
sum = 0;
qu(a, b, 1);
printf("%I64d\n", sum);
}
else
{
scanf("%d%d%d", &a, &b, &c);
add(a, b, c, 1);
}
}
return 0;
}
POJ 3468 A Simple Problem with Integers //线段树的成段更新的更多相关文章
- POJ3648 A Simple Problem with Integers(线段树之成段更新。入门题)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 53169 Acc ...
- poj 3468 A Simple Problem with Integers 线段树区间加,区间查询和
A Simple Problem with Integers Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?i ...
- poj 3468 A Simple Problem with Integers 线段树区间加,区间查询和(模板)
A Simple Problem with Integers Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?i ...
- poj 3468 A Simple Problem with Integers 线段树第一次 + 讲解
A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal w ...
- [POJ] 3468 A Simple Problem with Integers [线段树区间更新求和]
A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal ...
- poj 3468 A Simple Problem with Integers (线段树区间更新求和lazy思想)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 75541 ...
- POJ 3468 A Simple Problem with Integers(线段树 成段增减+区间求和)
A Simple Problem with Integers [题目链接]A Simple Problem with Integers [题目类型]线段树 成段增减+区间求和 &题解: 线段树 ...
- poj 3468 A Simple Problem with Integers 线段树加延迟标记
A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal ...
- poj 3468 A Simple Problem with Integers 线段树区间更新
id=3468">点击打开链接题目链接 A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072 ...
随机推荐
- HDU 5067-Harry And Dig Machine(DFS)
Harry And Dig Machine Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- .NET2.0下的对象生成JSON数据
前言:今天研究了下在.NET2.0环境下开发Ajax程序经常用到的一个数据类型JSON, 一.什么是JSON? 自己也写不了句子不是很专业,下面是百度百科的关于JSON的介绍: JSON(JavaSc ...
- UltraEdit环境下,php简单环境配置
1.语法高亮 菜单->视图->查看方式->选中“PHP” 2.自动补全 菜单->高级->配置->自动完成->选中“自动显示自动完成对话框”,字符数选择2-3为 ...
- EF中的自动追踪与代理
自动追踪 EF框架会自动追踪实体的变化(通过比较实体的当前值与原始值). 默认情况下,以下方法会自动触发实体变化的追踪 DbSet.Find DbSet.Local DbSet.Remove DbSe ...
- (转)跟我一起学JQuery插件开发教程
在逛codeproject网站的时候,突然看到一篇文章:How to write plugin in Jquery. 如果对E文好的同学 ,可以看上面的连接.现在我把上面网站的及结合自己的想法写这篇文 ...
- ios中模拟延时的几种方法
- (void)delay1 { // 延迟执行不要用sleep,坏处:卡住当前线程 [NSThread sleepForTimeInterval:3]; NSLog(@&qu ...
- SignalR2.0开发实例之——创建房间聊天
SignalR作为一个强大的集线器,已经在hub里面集成了Gorups,也就是分组管理,使用方法如下: //作用:将连接ID加入某个组 //Context.ConnectionId 连接ID,每个页面 ...
- MySql 1045错误
配置时以管理员身份运行MySQL Instance Configuration Wizard 当你登录MySQL数据库出现:Error 1045错误时(如下图),就表明你输入的用户名或密码错误被拒绝访 ...
- TEXT类型
创建文档document.createTextNode("直接就是想打的文本") 然后用 appendChild() 再然后就是一些其他的方法 appendData(a)在a里面直 ...
- IE下兼容Css+HTML5
/*! HTML5 Shiv vpre3.6 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed Uncompressed source: h ...