http://lightoj.com/volume_showproblem.php?problem=1245

G - Harmonic Number (II)

Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

Description

I was trying to solve problem '1234 - Harmonic Number', I wrote the following code

long long H( int n ) {
    long long res = 0;
    for( int i = 1; i <= n; i++ )
        res = res + n / i;
    return res;
}

Yes, my error was that I was using the integer divisions only. However, you are given n, you have to find H(n) as in my code.

Input

Input starts with an integer T (≤ 1000), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n < 231).

Output

For each case, print the case number and H(n) calculated by the code.

Sample Input

11

1

2

3

4

5

6

7

8

9

10

2147483647

Sample Output

Case 1: 1

Case 2: 3

Case 3: 5

Case 4: 8

Case 5: 10

Case 6: 14

Case 7: 16

Case 8: 20

Case 9: 23

Case 10: 27

Case 11: 46475828386

根据题中的代码便可知道题意,题意不多说
 
先看两个例子
1.
n = 10    sqrt(10) = 3     10/sqrt(10) = 3
i        1   2   3         4   5   6   7   8   9   10
n/i    10  5   3         2   2   1   1   1   1    1
 
m =  n/i
sum += m;
m = 1的个数10/1-10/2 = 5;
m = 2的个数10/2-10/3 = 2;
m = 3的个数10/3-10/4 = 1;
 
2.
n = 20     sqrt(20) = 4     20/sqrt(20) = 5
i        1   2   3   4       5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20
n/i    20  10 6   5       4   3   2   2   2    2     1     1     1     1     1     1     1     1    1    1
 
m =  n/i
sum += m;
m = 1的个数20/1-20/2 = 10;
m = 2的个数20/2-20/3 = 4;
m = 3的个数20/3-20/4 = 1;
m = 4的个数20/4-20/5 = 1;
...
m = i的个数20/i - 20/(i + 1)(1<= i <= sqrt(n))
 
这样我们可以得出:sqrt(n)之前的数我们可以直接用for循环来求
sqrt(n)之后的sum += (n/i - n/(i + 1)) * i;
当sqrt(n) = n / sqrt(n)时(如第一个例子10,sum就多加了一个3),sum多加了一个sqrt(n),减去即可;
 
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm> using namespace std;
const int N = ;
typedef long long ll; int main()
{
int t, n, p = ;
ll sum;
scanf("%d", &t);
while(t--)
{
sum = ;
p++;
scanf("%d", &n);
int m = sqrt(n);
for(int i = ; i <= m ; i++)
sum += n / i;
for(int i = ; i <= m; i++)
sum += (n / i - n / (i + )) * i;
if(m == n / m)
sum -= m;
printf("Case %d: %lld\n", p, sum);
}
return ;
}
 

LightOJ 1245 Harmonic Number (II)(找规律)的更多相关文章

  1. LightOj 1245 --- Harmonic Number (II)找规律

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1245 题意就是求 n/i (1<=i<=n) 的取整的和这就是到找规律的题 ...

  2. 1245 - Harmonic Number (II)(规律题)

    1245 - Harmonic Number (II)   PDF (English) Statistics Forum Time Limit: 3 second(s) Memory Limit: 3 ...

  3. G - Harmonic Number (II) 找规律--> 给定一个数n,求n除以1~n这n个数的和。n达到2^31 - 1;

    /** 题目:G - Harmonic Number (II) 链接:https://vjudge.net/contest/154246#problem/G 题意:给定一个数n,求n除以1~n这n个数 ...

  4. LightOJ - 1245 - Harmonic Number (II)(数学)

    链接: https://vjudge.net/problem/LightOJ-1245 题意: I was trying to solve problem '1234 - Harmonic Numbe ...

  5. lightoj 1245 Harmonic Number (II)(简单数论)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1245 题意:求f(n)=n/1+n/2.....n/n,其中n/i保留整数 显 ...

  6. LightOJ 1245 - Harmonic Number (II)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1245 题意:仿照上面那题他想求这么个公式的数.但是递归太慢啦.让你找公式咯. ...

  7. LightOJ 1245 Harmonic Number (II) 水题

    分析:一段区间的整数除法得到的结果肯定是相等的,然后找就行了,每次是循环一段区间,暴力 #include <cstdio> #include <iostream> #inclu ...

  8. LightOJ - 1245 Harmonic Number (II) 求同值区间的和

    题目大意:对下列代码进行优化 long long H( int n ) {    long long res = 0;    for( int i = 1; i <= n; i++ )      ...

  9. LightOJ - 1234 LightOJ - 1245 Harmonic Number(欧拉系数+调和级数)

    Harmonic Number In mathematics, the nth harmonic number is the sum of the reciprocals of the first n ...

随机推荐

  1. 64位Ubuntu 13.04 安装Bochs 2.3.5

    bochs 2.3.5源码编译 网上编译bochs的资料非常多,基本的问题都有解决方案,我重点讲不常见的问题. 基本安装步骤 tar vxzf bochs-2.3.5.tar.gz cd bochs- ...

  2. 【笨嘴拙舌WINDOWS】实践检验之屏幕取色

    实践是检验真理的唯一标准 要取得屏幕的颜色,首先需要创建一个屏幕DC,然后使用该DC,调用GetPixel就可以了 "Note:GetPixel传入的DC应该是屏幕的DC,而不是桌面的DC, ...

  3. HDU 2149 (巴什博奕) Public Sale

    没什么好说的,一道水题. #include <cstdio> int main() { int n, m; ) { if(n <= m) { for(int i = n; i < ...

  4. ASP.NET MVC 4 WebAPI. Support Areas in HttpControllerSelector

    This article was written for ASP.NET MVC 4 RC (Release Candidate). If you are still using Beta versi ...

  5. 在view中常见的四种方法的使用场合

    四种方法,使view创建好里面就有东西:[1.init  2.initWithFrame使用代码创建的时候.(从文件创建的时候不一定调用:1.init  2.initWithFrame这两个方法) 3 ...

  6. Java Cardioid 心脏形曲线 (整理)

    package demo; import java.awt.Color; import java.awt.Graphics; import javax.swing.JFrame; import jav ...

  7. setTimeout/setInterval

    //使用 setTimeout 时需注意,当该代码执行时,JS 会立即编译函数第一个参数“code” //所以该函数的第一个参数应该为:需要编译的代码.或者一个函数 //例1:setTimeout(& ...

  8. 安装完eclipse,dbwear后,需要在他们解压文件.ini下加上你liux的jdk的安装路径,才能正常使用

    -vm/usr/java/jdk/jdk1.6.0_45/bin/java

  9. liux环境下配置jdk

    大家都知道,现在JAVA的发展可谓是如日中天,它覆盖面非常广泛,小到个人PC,大到商业应用都能见到它的身影.以前它是由SUN公司来维护的,现在已经归属到甲骨文旗下了. 今天我们来学习一下Java JD ...

  10. Apache PHP 安装问题 (SUSE Linux)

    1. SUSE Linux配置命令如下: './configure' '--with-apxs2=/usr/local/apache2/bin/apxs' '--with-mysql' 2. 接下来 ...