private void EM_Init (Instances inst)
throws Exception {
int i, j, k; // 由于EM算法对初始值较敏感,故选择run k means 10 times and choose best solution
SimpleKMeans bestK = null;
double bestSqE = Double.MAX_VALUE;
for (i = 0; i < 10; i++) {
SimpleKMeans sk = new SimpleKMeans();
sk.setSeed(m_rr.nextInt());
sk.setNumClusters(m_num_clusters);
sk.setDisplayStdDevs(true);
sk.buildClusterer(inst);
//KMeans中各个cluster的平方误差
if (sk.getSquaredError() < bestSqE) { bestSqE = sk.getSquaredError();
bestK = sk;
}
} /*************** KMeans Finds the best cluster number *****************/ // initialize with best k-means solution
m_num_clusters = bestK.numberOfClusters();
// 每个样本所在各个集群的概率
m_weights = new double[inst.numInstances()][m_num_clusters];
// 评估每个集群所对应的离散型属性的相关取值
30 m_model = new DiscreteEstimator[m_num_clusters][m_num_attribs];
// 每个集群所对应的连续性属性数所对应的相关取值(均值,标准偏差,样本权值(进行归一化))
m_modelNormal = new double[m_num_clusters][m_num_attribs][3];
// 每个集群所对应的先验概率
m_priors = new double[m_num_clusters];
// 每个集群所对应的中心点
Instances centers = bestK.getClusterCentroids();
// 每个集群所对应的标准差
Instances stdD = bestK.getClusterStandardDevs();
// ??? Returns for each cluster the frequency counts for the values of each nominal attribute
int [][][] nominalCounts = bestK.getClusterNominalCounts();
// 得到每个集群所对应的样本数
int [] clusterSizes = bestK.getClusterSizes(); for (i = 0; i < m_num_clusters; i++) {
Instance center = centers.instance(i);
for (j = 0; j < m_num_attribs; j++) { // 样本属性是离散型
if (inst.attribute(j).isNominal())
{
m_model[i][j] = new DiscreteEstimator(m_theInstances.attribute(j).numValues()
, true);
for (k = 0; k < inst.attribute(j).numValues(); k++) {
m_model[i][j].addValue(k, nominalCounts[i][j][k]);
}
}
//// 样本属性是连续型
else
{
double minStdD = (m_minStdDevPerAtt != null)? m_minStdDevPerAtt[j]: m_minStdDev;
double mean = (center.isMissing(j))? inst.meanOrMode(j): center.value(j);
m_modelNormal[i][j][0] = mean;
double stdv = (stdD.instance(i).isMissing(j))? ((m_maxValues[j] -
m_minValues[j]) / (2 * m_num_clusters)): stdD.instance(i).value(j);
if (stdv < minStdD)
{
stdv = inst.attributeStats(j).numericStats.stdDev;
if (Double.isInfinite(stdv)) {
stdv = minStdD;
}
if (stdv < minStdD) {
stdv = minStdD;
}
}
if (stdv <= 0) {
stdv = m_minStdDev;
} m_modelNormal[i][j][1] = stdv;
m_modelNormal[i][j][2] = 1.0;
}
}
} for (j = 0; j < m_num_clusters; j++) {
// 计算每个集群的先验概率
m_priors[j] = clusterSizes[j];
}
Utils.normalize(m_priors);
}

Weka中EM算法详解的更多相关文章

  1. EM算法详解

    EM算法详解 1 极大似然估计 假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成 ...

  2. css中em单位详解,说明

    em详解      em可以理解成“倍”. em会以父级元素中所设置的字体像素值为基准值进行成倍放大: 字体大小=(父级元素中的字体像素 * em的值) 例: 网页部分代码如下: 1.我现在没有在父级 ...

  3. 从最大似然函数 到 EM算法详解

    极大似然算法 本来打算把别人讲的好的博文放在上面的,但是感觉那个适合看着玩,我看过之后感觉懂了,然后实际应用就不会了.... MLP其实就是用来求模型参数的,核心就是“模型已知,求取参数”,模型的意思 ...

  4. javascript 中合并排序算法 详解

    javascript 中合并排序算法 详解 我会通过程序的执行过程来给大家合并排序是如何排序的...  合并排序代码如下: <script type="text/javascript& ...

  5. SVD在推荐系统中的应用详解以及算法推导

    SVD在推荐系统中的应用详解以及算法推导     出处http://blog.csdn.net/zhongkejingwang/article/details/43083603 前面文章SVD原理及推 ...

  6. BM算法  Boyer-Moore高质量实现代码详解与算法详解

    Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...

  7. kmp算法详解

    转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...

  8. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  9. [转] KMP算法详解

    转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段.    我们这里说的K ...

随机推荐

  1. 20160129.CCPP体系详解(0008天)

    程序片段(01):函数.c+call.c+测试.cpp 内容概要:函数 ///函数.c #include <stdio.h> #include <stdlib.h> //01. ...

  2. delete之后千万要记得将指针置空,即勿重复delete!!!

    下面这段代码有什么问题吗?(Arduino上运行) class C{ public: C(){ ptr = ]; } ~C(){ if(ptr!=NULL)delete [] ptr; } void ...

  3. AndroidSdk离线下载

    http://dl.vmall.com/c00x42abt3# 关键字:android sdk 离线

  4. WORD中如何让前两页不显示页码

    WORD中如何让前两页不显示页码   上稿人:ojn 点击率: 15191   我们有时在用word编辑文档时,会遇上第一.二页无需显示页码,第三页才是正文的第一页时,该如何正确插入页码呢? 以wor ...

  5. The Network Adapter could not establish the connection解决办法

    用 oracle net manager 将监听改为IP地址,将服务命名也改为IP地址,然后数据库连接改为IP地址方式不要用localhost

  6. poj 1472(递归模拟)

    题意:就是让你求出时间复杂度. 分析:由于指数最多为10次方,所以可以想到用一个数组保存各个指数的系数,具体看代码实现吧! 代码实现: #include<cstdio> #include& ...

  7. ANT 发布项目中 build.xml 文件的详细配置

    xml 代码 <?xml version="1.0" encoding="UTF-8"?> <!-- name:对应工程名字 default: ...

  8. Java并发编程-总纲

    Java 原生支持并发,基本的底层同步包括:synchronized,用来标示一个方法(普通,静态)或者一个块需要同步执行(某一时刻,只允许一个线程在执行代码块).volatile,用来标识一个变量是 ...

  9. mongo 安装

    mongo 安装: 1.按照 https://docs.mongodb.com/manual/tutorial/install-mongodb-on-red-hat/ 安装 2.安装成功后创建用户 d ...

  10. selenium + python 自动化测试环境搭建

    selenium + python 自动化测试 —— 环境搭建 关于 selenium Selenium 是一个用于Web应用程序测试的工具.Selenium测试直接运行在浏览器中,就像真正的用户在操 ...