原文:http://www.orangecube.net/python-time-complexity

本文翻译自Python Wiki
本文基于GPL v2协议,转载请保留此协议。

本页面涵盖了Python中若干方法的时间复杂度(或者叫“大欧”,“Big O”)。该时间复杂度的计算基于当前(译注:至少是2011年之前)的CPython实现。其他Python的实现(包括老版本或者尚在开发的CPython实现)可能会在性能表现上有些许小小的差异,但一般不超过一个O(log n)项。

本文中,’n’代表容器中元素的数量,’k’代表参数的值,或者参数的数量。

列表(list

以完全随机的列表考虑平均情况。

列表是以数组(Array)实现的。最大的开销发生在超过当前分配大小的增长,这种情况下所有元素都需要移动;或者是在起始位置附近插入或者删除元素,这种情况下所有在该位置后面的元素都需要移动。如果你需要在一个队列的两端进行增删的操作,应当使用collections.deque(双向队列)

操作 平均情况 最坏情况
复制 O(n) O(n)
append[注1] O(1) O(1)
插入 O(n) O(n)
取元素 O(1) O(1)
更改元素 O(1) O(1)
删除元素 O(n) O(n)
遍历 O(n) O(n)
取切片 O(k) O(k)
删除切片 O(n) O(n)
更改切片 O(k+n) O(k+n)
extend[注1] O(k) O(k)
排序 O(n log n) O(n log n)
列表乘法 O(nk) O(nk)
x in s O(n)  
min(s), max(s) O(n)  
计算长度 O(1) O(1)

双向队列(collections.deque

deque (double-ended queue,双向队列)是以双向链表的形式实现的 (Well, a list of arrays rather than objects, for greater efficiency)。双向队列的两端都是可达的,但从查找队列中间的元素较为缓慢,增删元素就更慢了。

操作 平均情况 最坏情况
复制 O(n) O(n)
append O(1) O(1)
appendleft O(1) O(1)
pop O(1) O(1)
popleft O(1) O(1)
extend O(k) O(k)
extendleft O(k) O(k)
rotate O(k) O(k)
remove O(n) O(n)

集合(set)

未列出的操作可参考 dict —— 二者的实现非常相似。

操作 平均情况 最坏情况
x in s O(1) O(n)
并集 s|t O(len(s)+len(t))  
交集 s&t O(min(len(s), len(t)) O(len(s) * len(t))
差集 s-t O(len(s))  
s.difference_update(t) O(len(t))  
对称差集 s^t O(len(s)) O(len(s) * len(t))
s.symmetric_difference_update(t) O(len(t)) O(len(t) * len(s))

由源码得知,求差集(s-t,或s.difference(t))运算与更新为差集(s.difference_uptate(t))运算的时间复杂度并不相同!前者是将在s中,但不在t中的元素添加到新的集合中,因此时间复杂度为O(len(s));后者是将在t中的元素从s中移除,因此时间复杂度为O(len(t))。因此,使用时请留心,根据两个集合的大小以及是否需要新集合来选择合适的方法。

集合的s-t运算中,并不要求t也一定是集合。只要t是可遍历的对象即可。

字典(dict)

下列字典的平均情况基于以下假设:
1. 对象的散列函数足够撸棒(robust),不会发生冲突。
2. 字典的键是从所有可能的键的集合中随机选择的。

小窍门:只使用字符串作为字典的键。这么做虽然不会影响算法的时间复杂度,但会对常数项产生显著的影响,这决定了你的一段程序能多快跑完。

操作 平均情况 最坏情况
复制[注2] O(n) O(n)
取元素 O(1) O(n)
更改元素[注1] O(1) O(n)
删除元素 O(1) O(n)
遍历[注2] O(n) O(n)

注:
[1] = These operations rely on the “Amortized” part of “Amortized Worst Case”. Individual actions may take surprisingly long, depending on the history of the container.

[2] = For these operations, the worst case n is the maximum size the container ever achieved, rather than just the current size. For example, if N objects are added to a dictionary, then N-1 are deleted, the dictionary will still be sized for N objects (at least) until another insertion is made.

Python内置方法的时间复杂度(转)的更多相关文章

  1. Python内置方法的时间复杂度

    转载自:http://www.orangecube.NET/Python-time-complexity 本页面涵盖了Python中若干方法的时间复杂度(或者叫"大欧"," ...

  2. python 内置方法的时间复杂度

    好文,非常值得参考 http://www.orangecube.net/python-time-complexity

  3. Python内置方法详解

    1. 字符串内置方法详解 为何要有字符串?相对于元组.列表等,对于唯一类型的定义,字符串具有最简单的形式. 字符串往往以变量接收,变量名. 可以查看所有的字符串的内置方法,如: 1> count ...

  4. 匿名函数 python内置方法(max/min/filter/map/sorted/reduce)面向过程编程

    目录 函数进阶三 1. 匿名函数 1. 什么是匿名函数 2. 匿名函数的语法 3. 能和匿名函数联用的一些方法 2. python解释器内置方法 3. 异常处理 面向过程编程 函数进阶三 1. 匿名函 ...

  5. 时间复杂度Big O以及Python 内置函数的时间复杂度

    声明:本文部分内容摘自 原文 本文翻译自Python Wiki 本文基于GPL v2协议,转载请保留此协议. 本页面涵盖了Python中若干方法的时间复杂度(或者叫"大欧",&qu ...

  6. python 内置方法、数据序列化

    abc(*args, **kwargs) 取绝对值 def add(a,b,f): return f(a)+f(b) res = add(3,-6,abs) print(res) all(*args, ...

  7. 基于python内置方法进行代码混淆

    0x00 动态加载模块 在python脚本中,直接使用import os.import subprocess或from os import system这种方法很容易被规则检测,即使使用其它执行命令的 ...

  8. python内置方法

    1. 简介 本指南归纳于我的几个月的博客,主题是 魔法方法 . 什么是魔法方法呢?它们在面向对象的Python的处处皆是.它们是一些可以让你对类添加"魔法"的特殊方法. 它们经常是 ...

  9. Python几种数据结构内置方法的时间复杂度

    参考:https://blog.csdn.net/baoli1008/article/details/48059623 注:下文中,’n’代表容器中元素的数量,’k’代表参数的值,或者参数的数量. 1 ...

随机推荐

  1. 转:ViewPager+Fragment基本使用方法(附源码)

    ViewPager+Fragment可以做出多页面滑动效果,让我们的应用程序界面操作起来更加灵活 对于ViewPager和Fragment组件还不熟悉的朋友,可以先看看相关的资料 首先在activit ...

  2. innodb锁之间的兼容性判断

    检查锁与锁之间的兼容性 路径:/mysql-5.5.43/storage/innobase/lock/lock0lock.c 实现:见锁的强度比较  row 可理解为 lock 的锁模式  colum ...

  3. poj2942 Knights of the Round Table 双连通分支 tarjan

    题解:http://blog.csdn.net/lyy289065406/article/details/6756821 讲的很详细我就不多说了. 题目连接:http://poj.org/proble ...

  4. codeforces 450 B Jzzhu and Sequences

    题意:给出f1=x,f2=y,f(i)=f(i-1)+f(i+1),求f(n)模上10e9+7 因为 可以求出通项公式:f(i)=f(i-1)-f(i-2) 然后 f1=x; f2=y; f3=y-x ...

  5. hadoop DataNode实现分析

    在前面说hadoop整体实现的时候, 说过DataNode的需要完成的首要任务是K-V存储.                                            第二个功能是 完成和 ...

  6. Windows Tftpd32 DHCP服务器 使用

    /********************************************************************* * Windows Tftpd32 DHCP服务器 使用 ...

  7. HDU Sky数 2097

    解题思路:类比求出10进制数各个位上的数字之和,求出12进制和16进制上的数. #include<cstdio> #include<cstring> #include<a ...

  8. 2015-10-13 晴 tcp/ip卷1

    今年看tcp/ip卷1的内容.苦和甜来自外界,坚强则来自内心,来自一个人的自我努力. 只有勤奋和积极进取的人 才会赢得成功的人生.加油

  9. 计算机网络——TCP与UDP协议详解

    根据应用程序的不同需求,运输层需要两种不同的运输协议,即面向连接的TCP和无连接的UDP. TCP:传输控制协议 TCP特点: 1)TCP是面向连接的运输层协议.所以,应用程序在使用TCP协议之前,必 ...

  10. 格式化输出星期几 C#

    string Today = DateTime.Now.ToString("yyyy-MM-dd dddd",new System.Globalization.CultureInf ...