Python内置方法的时间复杂度(转)
原文:http://www.orangecube.net/python-time-complexity
本文翻译自Python Wiki
本文基于GPL v2协议,转载请保留此协议。
本页面涵盖了Python中若干方法的时间复杂度(或者叫“大欧”,“Big O”)。该时间复杂度的计算基于当前(译注:至少是2011年之前)的CPython实现。其他Python的实现(包括老版本或者尚在开发的CPython实现)可能会在性能表现上有些许小小的差异,但一般不超过一个O(log n)项。
本文中,’n’代表容器中元素的数量,’k’代表参数的值,或者参数的数量。
列表(list
)
以完全随机的列表考虑平均情况。
列表是以数组(Array)实现的。最大的开销发生在超过当前分配大小的增长,这种情况下所有元素都需要移动;或者是在起始位置附近插入或者删除元素,这种情况下所有在该位置后面的元素都需要移动。如果你需要在一个队列的两端进行增删的操作,应当使用collections.deque
(双向队列)
操作 | 平均情况 | 最坏情况 |
复制 | O(n) | O(n) |
append[注1] | O(1) | O(1) |
插入 | O(n) | O(n) |
取元素 | O(1) | O(1) |
更改元素 | O(1) | O(1) |
删除元素 | O(n) | O(n) |
遍历 | O(n) | O(n) |
取切片 | O(k) | O(k) |
删除切片 | O(n) | O(n) |
更改切片 | O(k+n) | O(k+n) |
extend[注1] | O(k) | O(k) |
排序 | O(n log n) | O(n log n) |
列表乘法 | O(nk) | O(nk) |
x in s | O(n) | |
min(s), max(s) | O(n) | |
计算长度 | O(1) | O(1) |
双向队列(collections.deque
)
deque (double-ended queue,双向队列)是以双向链表的形式实现的 (Well, a list of arrays rather than objects, for greater efficiency)。双向队列的两端都是可达的,但从查找队列中间的元素较为缓慢,增删元素就更慢了。
操作 | 平均情况 | 最坏情况 |
复制 | O(n) | O(n) |
append | O(1) | O(1) |
appendleft | O(1) | O(1) |
pop | O(1) | O(1) |
popleft | O(1) | O(1) |
extend | O(k) | O(k) |
extendleft | O(k) | O(k) |
rotate | O(k) | O(k) |
remove | O(n) | O(n) |
集合(set)
未列出的操作可参考 dict —— 二者的实现非常相似。
操作 | 平均情况 | 最坏情况 |
x in s | O(1) | O(n) |
并集 s|t | O(len(s)+len(t)) | |
交集 s&t | O(min(len(s), len(t)) | O(len(s) * len(t)) |
差集 s-t | O(len(s)) | |
s.difference_update(t) | O(len(t)) | |
对称差集 s^t | O(len(s)) | O(len(s) * len(t)) |
s.symmetric_difference_update(t) | O(len(t)) | O(len(t) * len(s)) |
由源码得知,求差集(s-t
,或s.difference(t)
)运算与更新为差集(s.difference_uptate(t)
)运算的时间复杂度并不相同!前者是将在s中,但不在t中的元素添加到新的集合中,因此时间复杂度为O(len(s));后者是将在t中的元素从s中移除,因此时间复杂度为O(len(t))。因此,使用时请留心,根据两个集合的大小以及是否需要新集合来选择合适的方法。
集合的s-t运算中,并不要求t也一定是集合。只要t是可遍历的对象即可。
字典(dict)
下列字典的平均情况基于以下假设:
1. 对象的散列函数足够撸棒(robust),不会发生冲突。
2. 字典的键是从所有可能的键的集合中随机选择的。
小窍门:只使用字符串作为字典的键。这么做虽然不会影响算法的时间复杂度,但会对常数项产生显著的影响,这决定了你的一段程序能多快跑完。
操作 | 平均情况 | 最坏情况 |
复制[注2] | O(n) | O(n) |
取元素 | O(1) | O(n) |
更改元素[注1] | O(1) | O(n) |
删除元素 | O(1) | O(n) |
遍历[注2] | O(n) | O(n) |
注:
[1] = These operations rely on the “Amortized” part of “Amortized Worst Case”. Individual actions may take surprisingly long, depending on the history of the container.
[2] = For these operations, the worst case n is the maximum size the container ever achieved, rather than just the current size. For example, if N objects are added to a dictionary, then N-1 are deleted, the dictionary will still be sized for N objects (at least) until another insertion is made.
Python内置方法的时间复杂度(转)的更多相关文章
- Python内置方法的时间复杂度
转载自:http://www.orangecube.NET/Python-time-complexity 本页面涵盖了Python中若干方法的时间复杂度(或者叫"大欧"," ...
- python 内置方法的时间复杂度
好文,非常值得参考 http://www.orangecube.net/python-time-complexity
- Python内置方法详解
1. 字符串内置方法详解 为何要有字符串?相对于元组.列表等,对于唯一类型的定义,字符串具有最简单的形式. 字符串往往以变量接收,变量名. 可以查看所有的字符串的内置方法,如: 1> count ...
- 匿名函数 python内置方法(max/min/filter/map/sorted/reduce)面向过程编程
目录 函数进阶三 1. 匿名函数 1. 什么是匿名函数 2. 匿名函数的语法 3. 能和匿名函数联用的一些方法 2. python解释器内置方法 3. 异常处理 面向过程编程 函数进阶三 1. 匿名函 ...
- 时间复杂度Big O以及Python 内置函数的时间复杂度
声明:本文部分内容摘自 原文 本文翻译自Python Wiki 本文基于GPL v2协议,转载请保留此协议. 本页面涵盖了Python中若干方法的时间复杂度(或者叫"大欧",&qu ...
- python 内置方法、数据序列化
abc(*args, **kwargs) 取绝对值 def add(a,b,f): return f(a)+f(b) res = add(3,-6,abs) print(res) all(*args, ...
- 基于python内置方法进行代码混淆
0x00 动态加载模块 在python脚本中,直接使用import os.import subprocess或from os import system这种方法很容易被规则检测,即使使用其它执行命令的 ...
- python内置方法
1. 简介 本指南归纳于我的几个月的博客,主题是 魔法方法 . 什么是魔法方法呢?它们在面向对象的Python的处处皆是.它们是一些可以让你对类添加"魔法"的特殊方法. 它们经常是 ...
- Python几种数据结构内置方法的时间复杂度
参考:https://blog.csdn.net/baoli1008/article/details/48059623 注:下文中,’n’代表容器中元素的数量,’k’代表参数的值,或者参数的数量. 1 ...
随机推荐
- Android 工程在4.0基础上混淆
Android现在对安全方面要求比较高了,我今天要做的对apk进行混淆,用所有的第三方工具都不能反编译,作者的知识产权得到保障了,是不是碉堡了. 一,首先说明我这是在4.0基础上进行的. 先看看pro ...
- C++ STL之priority_queue
STL中的priority_queue(优先队列)是一种会按照自定义的一种方式(数据的优先级)来对队列中的数据进行动态的排序的容器,不同优先级的情况下,top()上永远是最高优先级的数据,其底层采用的 ...
- Linux天天见
一.Linux基础篇 1. 发行版本 redhat/centos/suse/debian/ 2. 目录结构 /bin /boot -> grub /dev /etc ->init.d sy ...
- CSS之可收缩的底部边框
简述 <div>用来定义文档中的分区或节,<span>用来组合文档中的行内元素.我们可以通过<div>和 <span>将HTML元素组合起来. 下面我们 ...
- 转:整理一下Entity Framework的查询
Entity Framework是个好东西,虽然没有Hibernate功能强大,但使用更简便.今天整理一下常见SQL如何用EF来表达,Func形式和Linq形式都会列出来(本人更喜欢Func形式). ...
- Linux kernel scriptes bin2c "\x"
/**************************************************************************** * Linux kernel scripte ...
- android中handler用法总结
一.Handler的定义: Handler主要接收子线程发送的数据, 并用此数据配合主线程更新UI,用来跟UI主线程交互用.比如可以用handler发送一个message,然后在handler的线程中 ...
- linux vim 配置文件(高亮+自动缩进+行号+折叠+优化)
点评:将一下代码copy到 用户目录下 新建文件为 .vimrc保存即可生效 如果想所有用户生效 请修改 /etc/vimrc (建议先cp一份)"===================== ...
- wxWidgets简单的多线程
#include <wx/wx.h> #include <wx/thread.h> #include <wx/event.h> #include <wx/pr ...
- 批量生成sqlldr文件,高速卸载数据
SQL*Loader 是用于将外部数据进行批量高速加载的数据库的最高效工具,可用于将多种平面格式文件加载到Oracle数据库.SQL*Loader支持传统路径模式以及直接路径这两种加载模式.关于SQL ...