Python内置方法的时间复杂度(转)
原文:http://www.orangecube.net/python-time-complexity
本文翻译自Python Wiki
本文基于GPL v2协议,转载请保留此协议。
本页面涵盖了Python中若干方法的时间复杂度(或者叫“大欧”,“Big O”)。该时间复杂度的计算基于当前(译注:至少是2011年之前)的CPython实现。其他Python的实现(包括老版本或者尚在开发的CPython实现)可能会在性能表现上有些许小小的差异,但一般不超过一个O(log n)项。
本文中,’n’代表容器中元素的数量,’k’代表参数的值,或者参数的数量。
列表(list)
以完全随机的列表考虑平均情况。
列表是以数组(Array)实现的。最大的开销发生在超过当前分配大小的增长,这种情况下所有元素都需要移动;或者是在起始位置附近插入或者删除元素,这种情况下所有在该位置后面的元素都需要移动。如果你需要在一个队列的两端进行增删的操作,应当使用collections.deque(双向队列)
| 操作 | 平均情况 | 最坏情况 |
| 复制 | O(n) | O(n) |
| append[注1] | O(1) | O(1) |
| 插入 | O(n) | O(n) |
| 取元素 | O(1) | O(1) |
| 更改元素 | O(1) | O(1) |
| 删除元素 | O(n) | O(n) |
| 遍历 | O(n) | O(n) |
| 取切片 | O(k) | O(k) |
| 删除切片 | O(n) | O(n) |
| 更改切片 | O(k+n) | O(k+n) |
| extend[注1] | O(k) | O(k) |
| 排序 | O(n log n) | O(n log n) |
| 列表乘法 | O(nk) | O(nk) |
| x in s | O(n) | |
| min(s), max(s) | O(n) | |
| 计算长度 | O(1) | O(1) |
双向队列(collections.deque)
deque (double-ended queue,双向队列)是以双向链表的形式实现的 (Well, a list of arrays rather than objects, for greater efficiency)。双向队列的两端都是可达的,但从查找队列中间的元素较为缓慢,增删元素就更慢了。
| 操作 | 平均情况 | 最坏情况 |
| 复制 | O(n) | O(n) |
| append | O(1) | O(1) |
| appendleft | O(1) | O(1) |
| pop | O(1) | O(1) |
| popleft | O(1) | O(1) |
| extend | O(k) | O(k) |
| extendleft | O(k) | O(k) |
| rotate | O(k) | O(k) |
| remove | O(n) | O(n) |
集合(set)
未列出的操作可参考 dict —— 二者的实现非常相似。
| 操作 | 平均情况 | 最坏情况 |
| x in s | O(1) | O(n) |
| 并集 s|t | O(len(s)+len(t)) | |
| 交集 s&t | O(min(len(s), len(t)) | O(len(s) * len(t)) |
| 差集 s-t | O(len(s)) | |
| s.difference_update(t) | O(len(t)) | |
| 对称差集 s^t | O(len(s)) | O(len(s) * len(t)) |
| s.symmetric_difference_update(t) | O(len(t)) | O(len(t) * len(s)) |
由源码得知,求差集(s-t,或s.difference(t))运算与更新为差集(s.difference_uptate(t))运算的时间复杂度并不相同!前者是将在s中,但不在t中的元素添加到新的集合中,因此时间复杂度为O(len(s));后者是将在t中的元素从s中移除,因此时间复杂度为O(len(t))。因此,使用时请留心,根据两个集合的大小以及是否需要新集合来选择合适的方法。
集合的s-t运算中,并不要求t也一定是集合。只要t是可遍历的对象即可。
字典(dict)
下列字典的平均情况基于以下假设:
1. 对象的散列函数足够撸棒(robust),不会发生冲突。
2. 字典的键是从所有可能的键的集合中随机选择的。
小窍门:只使用字符串作为字典的键。这么做虽然不会影响算法的时间复杂度,但会对常数项产生显著的影响,这决定了你的一段程序能多快跑完。
| 操作 | 平均情况 | 最坏情况 |
| 复制[注2] | O(n) | O(n) |
| 取元素 | O(1) | O(n) |
| 更改元素[注1] | O(1) | O(n) |
| 删除元素 | O(1) | O(n) |
| 遍历[注2] | O(n) | O(n) |
注:
[1] = These operations rely on the “Amortized” part of “Amortized Worst Case”. Individual actions may take surprisingly long, depending on the history of the container.
[2] = For these operations, the worst case n is the maximum size the container ever achieved, rather than just the current size. For example, if N objects are added to a dictionary, then N-1 are deleted, the dictionary will still be sized for N objects (at least) until another insertion is made.
Python内置方法的时间复杂度(转)的更多相关文章
- Python内置方法的时间复杂度
转载自:http://www.orangecube.NET/Python-time-complexity 本页面涵盖了Python中若干方法的时间复杂度(或者叫"大欧"," ...
- python 内置方法的时间复杂度
好文,非常值得参考 http://www.orangecube.net/python-time-complexity
- Python内置方法详解
1. 字符串内置方法详解 为何要有字符串?相对于元组.列表等,对于唯一类型的定义,字符串具有最简单的形式. 字符串往往以变量接收,变量名. 可以查看所有的字符串的内置方法,如: 1> count ...
- 匿名函数 python内置方法(max/min/filter/map/sorted/reduce)面向过程编程
目录 函数进阶三 1. 匿名函数 1. 什么是匿名函数 2. 匿名函数的语法 3. 能和匿名函数联用的一些方法 2. python解释器内置方法 3. 异常处理 面向过程编程 函数进阶三 1. 匿名函 ...
- 时间复杂度Big O以及Python 内置函数的时间复杂度
声明:本文部分内容摘自 原文 本文翻译自Python Wiki 本文基于GPL v2协议,转载请保留此协议. 本页面涵盖了Python中若干方法的时间复杂度(或者叫"大欧",&qu ...
- python 内置方法、数据序列化
abc(*args, **kwargs) 取绝对值 def add(a,b,f): return f(a)+f(b) res = add(3,-6,abs) print(res) all(*args, ...
- 基于python内置方法进行代码混淆
0x00 动态加载模块 在python脚本中,直接使用import os.import subprocess或from os import system这种方法很容易被规则检测,即使使用其它执行命令的 ...
- python内置方法
1. 简介 本指南归纳于我的几个月的博客,主题是 魔法方法 . 什么是魔法方法呢?它们在面向对象的Python的处处皆是.它们是一些可以让你对类添加"魔法"的特殊方法. 它们经常是 ...
- Python几种数据结构内置方法的时间复杂度
参考:https://blog.csdn.net/baoli1008/article/details/48059623 注:下文中,’n’代表容器中元素的数量,’k’代表参数的值,或者参数的数量. 1 ...
随机推荐
- 《OD大数据实战》驴妈妈旅游网大型离线数据电商分析平台
一.环境搭建 1. <OD大数据实战>Hadoop伪分布式环境搭建 2. <OD大数据实战>Hive环境搭建 3. <OD大数据实战>Sqoop入门实例 4. &l ...
- 关于Qt
什么是Qt Qt是一个针对桌面.嵌入式.移动设备的一个跨平台的应用程序开发框架,支持的平台包括Linux.OS X.Windows.VxWorks.QNX.Android.iOS.BlackBerry ...
- tarjan总结
先说一下割点跟割边吧. 割桥就是如果一个连通图里删除这条边之后,这个图会变成两个连通图,那么这条边就称之为割桥. 这是割桥的代码,里面呆着lca求法. 割点和割桥的就是用一个时间戳和回到祖先确定. 用 ...
- Kafka源码中的Producer Record定义
1.ProducerRecord 含义: 发送给Kafka Broker的key/value 值对 2.内部数据结构: -- Topic (名字) -- PartitionID ( 可选) -- Ke ...
- Phpstorm Xdebug Web程序调试
平时调试php程序的时候,可以通过在代码中添加var_dump等函数来实现简单的断点调试. 下面介绍另一种方法,通过Phpstorm和Xdebug来进行调试. 1.下载Xdebug 这个是官网下载地址 ...
- 用 Xcode 开发 Cydia Substrate 插件(一)
关于这方面的中文资料太少了,以至于可能很多对插件开发感兴趣的孩子们都不知从何下手,于是呢我就写了这篇文章,希望对你能有所帮助.如果你觉得文章内容有什么错误呢也请提出来. 准备开发环境 1. 从 App ...
- 【JavaScript学习笔记】鼠标样式
style="cursor:hand" 手形 style="cursor:crosshair" 十字形 style="cursor ...
- 重拾Excel之为什么
现在如今想想自己,已经有许久许久没有充过电了.现在想好好地充电. 机遇总是垂青于有准备的人!
- hadoop完全分布式模式的安装和配置
本文是将三台电脑用路由器搭建本地局域网,系统为centos6.5,已经实验验证,搭建成功. 一.设置静态IP&修改主机名&关闭防火墙(all-root)(对三台电脑都需要进行操作) 0 ...
- 把一个窗体嵌入到WinForm中进行显示,以CMD窗口为例
1.添加引用 using System.Runtime.InteropServices; 2. 加入以下代码段 [DllImport("User32.dll ", EntryPoi ...