algorithm@ Sieve of Eratosthenes (素数筛选算法) & Related Problem (Return two prime numbers )
Sieve of Eratosthenes (素数筛选算法)
Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number.
For example, if n is 10, the output should be “2, 3, 5, 7″. If n is 20, the output should be “2, 3, 5, 7, 11, 13, 17, 19″.
The sieve of Eratosthenes is one of the most efficient ways to find all primes smaller than n when n is smaller than 10 million or so (Ref Wiki).
Following is the algorithm to find all the prime numbers less than or equal to a given integer n by Eratosthenes’ method:
- Create a list of consecutive integers from 2 to n: (2, 3, 4, …, n).
- Initially, let p equal 2, the first prime number.
- Starting from p, count up in increments of p and mark each of these numbers greater than p itself in the list. These numbers will be 2p, 3p, 4p, etc.; note that some of them may have already been marked.
- Find the first number greater than p in the list that is not marked. If there was no such number, stop. Otherwise, let p now equal this number (which is the next prime), and repeat from step 3.
When the algorithm terminates, all the numbers in the list that are not marked are prime.
Explanation with Example:
Let us take an example when n = 50. So we need to print all print numbers smaller than or equal to 50.
We create a list of all numbers from 2 to 50.
According to the algorithm we will mark all the numbers which are divisible by 2.
Now we move to our next unmarked number 3 and mark all the numbers which are multiples of 3.
We move to our next unmarked number 5 and mark all multiples of 5.
We continue this process and our final table will look like below:
So the prime numbers are the unmarked ones: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47.
Related Practice Problem
http://www.practice.geeksforgeeks.org/problem-page.php?pid=425
Return two prime numbers
Given an even number ( greater than 2 ), return two prime numbers whose sum will be equal to given number. There are several combinations possible. Print only first such pair.
NOTE: A solution will always exist, read Goldbach’s conjecture.
Also, solve the problem in linear time complexity, i.e., O(n).
Input:
The first line contains T, the number of test cases. The following T lines consist of a number each, for which we'll find two prime numbers.
Note: The number would always be an even number.
Output:
For every test case print two prime numbers space separated, such that the smaller number appears first. Answer for each test case must be in a new line.
Constraints:
1 ≤ T ≤ 70
1 ≤ N ≤ 10000
Example:
Input:
5
74
1024
66
8
9990
Output:
3 71
3 1021
5 61
3 5
17 9973
import java.util.*;
import java.lang.*;
import java.io.*; class GFG { public static void func(int n) { boolean[] prime = new boolean[n+1];
for(int i=2; i<=n; ++i) {
prime[i] = true;
} for(int p=2; p*p<=n; ++p) {
if(prime[p]) {
for(int k=2*p; k<=n; k+=p) {
prime[k] = false;
}
}
} ArrayList<Integer> rs = new ArrayList<Integer> ();
for(int i=2; i<=n; ++i) {
if(prime[i]) {
rs.add(i);
}
} for(int i=0; i<rs.size(); ++i) {
int first = rs.get(i);
int second = n - first;
if(prime[first] && prime[second]) {
System.out.println(first + " " + second);
break;
}
}
} public static void main (String[] args) {
Scanner in = new Scanner(System.in);
int t = in.nextInt(); for(int i=0; i<t; ++i) {
int n = in.nextInt();
func(n);
}
}
}
algorithm@ Sieve of Eratosthenes (素数筛选算法) & Related Problem (Return two prime numbers )的更多相关文章
- Algorithm: Sieve of Eratosthenes
寻找比n小的所有质数的方法. 2是质数, 2*i都是质数,同样3是质数,3*i也都是质数 代码如下 int n; vector<, true); prime[] = prime[] = fals ...
- UVa 1210 (高效算法设计) Sum of Consecutive Prime Numbers
题意: 给出n,求把n写成若干个连续素数之和的方案数. 分析: 这道题非常类似大白书P48的例21,上面详细讲了如何从一个O(n3)的算法优化到O(n2)再到O(nlogn),最后到O(n)的神一般的 ...
- 使用埃拉托色尼筛选法(the Sieve of Eratosthenes)在一定范围内求素数及反素数(Emirp)
Programming 1.3 In this problem, you'll be asked to find all the prime numbers from 1 to 1000. Prime ...
- 埃拉托色尼筛法(Sieve of Eratosthenes)求素数。
埃拉托色尼筛法(Sieve of Eratosthenes)是一种用来求所有小于N的素数的方法.从建立一个整数2~N的表着手,寻找i? 的整数,编程实现此算法,并讨论运算时间. 由于是通过删除来实现, ...
- [原]素数筛法【Sieve Of Eratosthenes + Sieve Of Euler】
拖了有段时间,今天来总结下两个常用的素数筛法: 1.sieve of Eratosthenes[埃氏筛法] 这是最简单朴素的素数筛法了,根据wikipedia,时间复杂度为 ,空间复杂度为O(n). ...
- [Algorithm] Finding Prime numbers - Sieve of Eratosthenes
Given a number N, the output should be the all the prime numbers which is less than N. The solution ...
- 素数筛选法(prime seive)
素数筛选法比较有名的,较常用的是Sieve of Eratosthenes,为古希腊数学家埃拉托色尼(Eratosthenes 274B.C.-194B.C.)提出的一种筛选法.详细步骤及图示讲解,还 ...
- 新疆大学(新大)OJ xju 1009: 一带一路 prim求最短路径+O(n)素数筛选
1009: 一带一路 时间限制: 1 Sec 内存限制: 128 MB 题目描述 一带一路是去去年习大大提出来的建设“新丝绸之路经济带”和“21世纪海上丝绸之路”的战略构想.其中就包括我们新疆乌鲁木 ...
- “计数质数”问题的常规思路和Sieve of Eratosthenes算法分析
题目描述 题目来源于 LeetCode 204.计数质数,简单来讲就是求"不超过整数 n 的所有素数个数". 常规思路 一般来讲,我们会先写一个判断 a 是否为素数的 isPrim ...
随机推荐
- 《OD大数据实战》HBase环境搭建
一.环境搭建 1. 下载 hbase-0.98.6-cdh5.3.6.tar.gz 2. 解压 tar -zxvf hbase-0.98.6-cdh5.3.6.tar.gz -C /opt/modul ...
- combobox远程加载数据的总结和Json数据的小结
1.从后台返回请求加载Combobox下拉框数据 html部分1 <select name="mateBelongZ" id="mateBelongZID" ...
- sqlserver重命名字段名称
EXEC sp_rename 'S2BASE_PRODUCT.[PRODUCT_ID]','TABTYPE_ID','COLUMN';
- networking常用命令
nc -l 3000 将开一个临时的3000端口并且侦听,用于测试
- bzoj4197
这题现场想的思路方向都是对的,但限于现场和实力因素没能A 很显然我们会想到质因数的选取 如果某个质数p被W选了,那G就不能选含有质因子p的数 因此我们不难想到状压质数的选取情况,令f[i][j]为w质 ...
- POJ 1456 (贪心+并查集) Supermarket
有n件商品,每件商品有它的利润和售出的最后期限,问能够得到的最大利润是多少 这道题和 HDU 1789 Doing Homework again 几乎一模一样,只不过这个是求最的扣分,本题是求最大利润 ...
- http server 下载地址
windows 64为位:https://www.apachelounge.com/download/
- AIX 第5章 指令记录
AIX引导过程 AIX不同引导模式 AIX的关闭 AIX的计划任务 AIX服务的管理 AIX的常用日志 POST=Power On Self Test rc.boot 的三次调用 /etc/ini ...
- mac os 系统密码正确的 但是进不了系统
今天开始重新学习C 但是一早起来开机进不了系统 密码明明正确的 无语了,后来打苹果售后电话解决了. 今天记录下如何解决的,以后万一又出现这种问题,至于原因嘛 我也不知道 有可能跟我装的双系统有关系.只 ...
- Node.js 连接 MySQL 并进行数据库操作
Node.js 连接 MySQL 并进行数据库操作 按照这篇操作mysql的指引,我远程操作了我另一台电脑的mysql数据库. var mysql = require('mysql'); var c ...