algorithm@ Sieve of Eratosthenes (素数筛选算法) & Related Problem (Return two prime numbers )
Sieve of Eratosthenes (素数筛选算法)
Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number.
For example, if n is 10, the output should be “2, 3, 5, 7″. If n is 20, the output should be “2, 3, 5, 7, 11, 13, 17, 19″.
The sieve of Eratosthenes is one of the most efficient ways to find all primes smaller than n when n is smaller than 10 million or so (Ref Wiki).
Following is the algorithm to find all the prime numbers less than or equal to a given integer n by Eratosthenes’ method:
- Create a list of consecutive integers from 2 to n: (2, 3, 4, …, n).
- Initially, let p equal 2, the first prime number.
- Starting from p, count up in increments of p and mark each of these numbers greater than p itself in the list. These numbers will be 2p, 3p, 4p, etc.; note that some of them may have already been marked.
- Find the first number greater than p in the list that is not marked. If there was no such number, stop. Otherwise, let p now equal this number (which is the next prime), and repeat from step 3.
When the algorithm terminates, all the numbers in the list that are not marked are prime.
Explanation with Example:
Let us take an example when n = 50. So we need to print all print numbers smaller than or equal to 50.
We create a list of all numbers from 2 to 50.
According to the algorithm we will mark all the numbers which are divisible by 2.
Now we move to our next unmarked number 3 and mark all the numbers which are multiples of 3.
We move to our next unmarked number 5 and mark all multiples of 5.
We continue this process and our final table will look like below:
So the prime numbers are the unmarked ones: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47.
Related Practice Problem
http://www.practice.geeksforgeeks.org/problem-page.php?pid=425
Return two prime numbers
Given an even number ( greater than 2 ), return two prime numbers whose sum will be equal to given number. There are several combinations possible. Print only first such pair.
NOTE: A solution will always exist, read Goldbach’s conjecture.
Also, solve the problem in linear time complexity, i.e., O(n).
Input:
The first line contains T, the number of test cases. The following T lines consist of a number each, for which we'll find two prime numbers.
Note: The number would always be an even number.
Output:
For every test case print two prime numbers space separated, such that the smaller number appears first. Answer for each test case must be in a new line.
Constraints:
1 ≤ T ≤ 70
1 ≤ N ≤ 10000
Example:
Input:
5
74
1024
66
8
9990
Output:
3 71
3 1021
5 61
3 5
17 9973
import java.util.*;
import java.lang.*;
import java.io.*; class GFG { public static void func(int n) { boolean[] prime = new boolean[n+1];
for(int i=2; i<=n; ++i) {
prime[i] = true;
} for(int p=2; p*p<=n; ++p) {
if(prime[p]) {
for(int k=2*p; k<=n; k+=p) {
prime[k] = false;
}
}
} ArrayList<Integer> rs = new ArrayList<Integer> ();
for(int i=2; i<=n; ++i) {
if(prime[i]) {
rs.add(i);
}
} for(int i=0; i<rs.size(); ++i) {
int first = rs.get(i);
int second = n - first;
if(prime[first] && prime[second]) {
System.out.println(first + " " + second);
break;
}
}
} public static void main (String[] args) {
Scanner in = new Scanner(System.in);
int t = in.nextInt(); for(int i=0; i<t; ++i) {
int n = in.nextInt();
func(n);
}
}
}
algorithm@ Sieve of Eratosthenes (素数筛选算法) & Related Problem (Return two prime numbers )的更多相关文章
- Algorithm: Sieve of Eratosthenes
寻找比n小的所有质数的方法. 2是质数, 2*i都是质数,同样3是质数,3*i也都是质数 代码如下 int n; vector<, true); prime[] = prime[] = fals ...
- UVa 1210 (高效算法设计) Sum of Consecutive Prime Numbers
题意: 给出n,求把n写成若干个连续素数之和的方案数. 分析: 这道题非常类似大白书P48的例21,上面详细讲了如何从一个O(n3)的算法优化到O(n2)再到O(nlogn),最后到O(n)的神一般的 ...
- 使用埃拉托色尼筛选法(the Sieve of Eratosthenes)在一定范围内求素数及反素数(Emirp)
Programming 1.3 In this problem, you'll be asked to find all the prime numbers from 1 to 1000. Prime ...
- 埃拉托色尼筛法(Sieve of Eratosthenes)求素数。
埃拉托色尼筛法(Sieve of Eratosthenes)是一种用来求所有小于N的素数的方法.从建立一个整数2~N的表着手,寻找i? 的整数,编程实现此算法,并讨论运算时间. 由于是通过删除来实现, ...
- [原]素数筛法【Sieve Of Eratosthenes + Sieve Of Euler】
拖了有段时间,今天来总结下两个常用的素数筛法: 1.sieve of Eratosthenes[埃氏筛法] 这是最简单朴素的素数筛法了,根据wikipedia,时间复杂度为 ,空间复杂度为O(n). ...
- [Algorithm] Finding Prime numbers - Sieve of Eratosthenes
Given a number N, the output should be the all the prime numbers which is less than N. The solution ...
- 素数筛选法(prime seive)
素数筛选法比较有名的,较常用的是Sieve of Eratosthenes,为古希腊数学家埃拉托色尼(Eratosthenes 274B.C.-194B.C.)提出的一种筛选法.详细步骤及图示讲解,还 ...
- 新疆大学(新大)OJ xju 1009: 一带一路 prim求最短路径+O(n)素数筛选
1009: 一带一路 时间限制: 1 Sec 内存限制: 128 MB 题目描述 一带一路是去去年习大大提出来的建设“新丝绸之路经济带”和“21世纪海上丝绸之路”的战略构想.其中就包括我们新疆乌鲁木 ...
- “计数质数”问题的常规思路和Sieve of Eratosthenes算法分析
题目描述 题目来源于 LeetCode 204.计数质数,简单来讲就是求"不超过整数 n 的所有素数个数". 常规思路 一般来讲,我们会先写一个判断 a 是否为素数的 isPrim ...
随机推荐
- 《OD大数据实战》驴妈妈旅游网大型离线数据电商分析平台
一.环境搭建 1. <OD大数据实战>Hadoop伪分布式环境搭建 2. <OD大数据实战>Hive环境搭建 3. <OD大数据实战>Sqoop入门实例 4. &l ...
- STL笔记(5)条款49:学习破解有关STL的编译器诊断信息
STL笔记(5)条款49:学习破解有关STL的编译器诊断信息 条款49:学习破解有关STL的编译器诊断信息 用一个特定的大小定义一个vector是完全合法的, vector<int> v( ...
- HibernateTools的使用
1. 到 Hibernate.org官网上 下载最新版的 Hibernate Tools,我用的是 HibernateTools-3.2.4.GA版 2. 将 下载下来的压缩包解压缩,里面会有 plu ...
- 3D volume texture和cube map
cube map texture可以理解为6个面的纸盒, sample的时候使用vector射线型的sample. volume texture可以理解是一摞2D texture,sample的时候用 ...
- C#处理文件流的转换
//----引入必要的命名空间 using System.IO; using System.Drawing.Imaging; //----代码部分----// private byte[] photo ...
- Nginx安全配置
nginx本身不能处理PHP,它只是个web服务器,当接收到请求后,如果是php请求,则发给php解释器处理,并把结果返回给客户端.nginx一般是把请求发fastcgi管理进程处理,fastcgi管 ...
- 总结swift 1.2适配swift2.0遇到的改变
swift1.2适配swift2.0 以下列举的是我在项目中遇到的需要修改的,基本常见的问题就没有罗列了. 1.find函数变成了为indexOf 2.sort变成了sortInPlace 3.sor ...
- 使用phantomjs生成网站快照
http://phantomjs.org/ 昨天(2013/08/12)在代码区看到一个生成站点快照的代码,看了半天才发现,作者仅仅贴出来业务代码,最核心的生成快照图片的代码反而没有给出来. 以前记得 ...
- Hibernate-Native SQL
1.标量(值)查询: sess.createSQLQuery("SELECT * FROM CATS").list(); sess.createSQLQuery("SEL ...
- hbase+hive应用场景
一.Hive应用场景本文主要讲述使用 Hive 的实践,业务不是关键,简要介绍业务场景,本次的任务是对搜索日志数据进行统计分析.集团搜索刚上线不久,日志量并不大 .这些日志分布在 5 台前端机,按小时 ...