NOIP2016 D2T1 組合數問題(problem)
题目描述
组合数C(n,m)表示的是从n个物品中选出m个物品的方案数。举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法。根据组合数的定 义,我们可以给出计算组合数的一般公式:
C(n,m)=n!/m!(n-m)!
其中n! = 1 × 2 × · · · × n
小葱想知道如果给定n,m和k,对于所有的0 <= i <= n,0 <= j <= min(i,m)有多少对 (i,j)满足C(i,j)是k的倍数。
输入输出格式
输入格式:
第一行有两个整数t,k,其中t代表该测试点总共有多少组测试数据,k的意义见 【问题描述】。
接下来t行每行两个整数n,m,其中n,m的意义见【问题描述】。
输出格式:
t行,每行一个整数代表答案。
输入输出样例
1 2
3 3
1
2 5
4 5
6 7
0
7
说明
【样例1说明】
在所有可能的情况中,只有C(2,1)=2是2的倍数。
【子任务】

這個題,首先暴力思路是質因數分解。(70分)
#include<cstdio>
int t,k,n,m,ans,pd,a;
int s[]={,,,,,,,};
int bz[],bd[];
int main(){
freopen("problem.in","r",stdin);
freopen("problem.ans","w",stdout);
scanf("%d%d",&t,&k);
for(int i=;i<&&k>=s[i];i++) while(k%s[i]==){k/=s[i];bz[i]++;}
while(t--){
ans=;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=i&&j<=m;j++){
pd=;
for(int k=j+;k<=i;k++){
a=k;
for(int l=;l<&&a>=s[l];l++) while(a%s[l]==){a/=s[l];bd[l]++;}
}
for(int k=;k<=i-j;k++){
a=k;
for(int l=;l<&&a>=s[l];l++) while(a%s[l]==){a/=s[l];bd[l]--;}
}
for(int k=;k<;k++){
if(bd[k]<bz[k]) pd=;
bd[k]=;
}
ans+=pd;
}
printf("%d\n",ans);
}
}
暴力
然後,組合數有一個遞推公式,即C(i,j)=C(i-1,j)+C(i-1,j-1),也就是大名鼎鼎的楊輝三角。
#include<cstdio>
int t,k,n,m,ans;
int c[][];
int main(){
freopen("problem.in","r",stdin);
freopen("problem.ans","w",stdout);
scanf("%d%d",&t,&k);
c[][]=c[][]=;
for(int i=;i<=;i++)
for(int j=;j<=i;j++){
c[i][j]=c[i-][j]+c[i-][j-];
c[i][j]%=k;
}
while(t--){
ans=;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=i&&j<=m;j++)
if(!c[i][j]) ++ans;
printf("%d\n",ans);
}
return ;
}
90分
而後提前處理一下,把查詢變成O(1)。
1 #include<cstdio>
2 int t,k,n,m,a;
3 int c[2010][2010];
4 int ans[2010][2010];
5 int main(){
6 freopen("problem.in","r",stdin);
7 freopen("problem.ans","w",stdout);
8 scanf("%d%d",&t,&k);
9 c[1][0]=c[1][1]=1;
10 for(int i=2;i<=2000;i++)
11 for(int j=0;j<=i;j++){
12 c[i][j]=c[i-1][j]+c[i-1][j-1];
13 c[i][j]%=k;
14 }
15 for(int i=1;i<=2000;i++){
16 a=0;
17 for(int j=0;j<i;j++){
18 if(!c[i][j]) ++a;
19 ans[i][j]=ans[i-1][j]+a;
20 }
21 for(int j=i;j<=2000;j++) ans[i][j]=ans[i][i-1];
22 }
23 while(t--){
24 scanf("%d%d",&n,&m);
25 printf("%d\n",ans[n][m]);
26 }
27 return 0;
28 }
NOIP第二水的題,而後。。。
NOIP2016 D2T1 組合數問題(problem)的更多相关文章
- [NOIP2016day2T1] 組合數問題(problem)
题目描述 组合数C(n,m)表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们 ...
- 何解決 LinqToExcel 發生「無法載入檔案或組件」問題何解決 LinqToExcel 發生「無法載入檔案或組件」問題
在自己的主機上透過 Visual Studio 2013 與 IISExpress 開發與測試都還正常,但只要部署到測試機或正式機,就是沒辦法順利執行,卡關許久之後找我協助.我發現錯誤訊息確實很「一般 ...
- [亂數] <細說> C/C++ 亂數基本使用與常見問題
陸陸續續寫了 EA 一.二年,以前亂數引導文回頭看時才發現,怎麼有這麼多細節的錯誤.沒系統. 這篇文章主要引導初學者使用亂數,同時附上常被翻出來討論的議題,C/C++適用,唯以 C 語言撰之. 也由 ...
- D. Rescue Nibel! 解析(思維、組合、離散化、差分)
Codeforce 1420 D. Rescue Nibel! 解析(思維.組合.離散化.差分) 今天我們來看看CF1420D 題目連結 題目 給你\(n\)個區間,求有幾種方法使得\(k\)個區間的 ...
- oracle系統表、數據字典介紹與日常問題診斷
oracle系統表.數據字典介紹與日常問題診斷 數據字典是由唯讀的table和view組成的,產生於$oracle_home\rdbms\admin\catalog.sql.裡面儲存Oracle資料庫 ...
- 【Java算法學習】斐波那契數列問題-兔子產子經典問題
/** * 用遞推算法求解斐波那契數列:Fn = Fn-2 +Fn-1; */ import java.util.*; public class Fibonacci { public static v ...
- [ Eclipse ] [ Problem ] Eclipse 無法開啟問題
因為 Eclipse 在設定環境的過程掛掉太多次,擷取一些網路上優秀的文章當作備份 http://www.ewdna.com/2013/12/Eclipse-Loading-Workbench.htm ...
- (转)約瑟夫問題的兩個O(log n)解法
約瑟夫問題的兩個O(log n)解法 這個是學習編程時的一個耳熟能詳的問題了: n個人(編號爲0,1,...,n-1)圍成一個圈子,從0號開始依次報數,每數到第m個人,這個人就得自殺, 之後從下個人開 ...
- ROHS無鉛問題解答!ROHS IPC SGS
無鉛smt(smd)問題1. 問Maxim關于無鉛的定義是什么?答無鉛表示在封裝或產品制造中不含鉛(化學符號為Pb).IC封裝中,Pb在外部引腳拋光或電鍍中很常見.對于晶片級封裝(UCSP和倒裝芯片) ...
随机推荐
- Easy UI 遮罩(MASK)
From :http://blog.csdn.net/luminji/article/details/16984839 Easy UI 的各类控件有些带了遮罩功能,如 DataGrid,可以这样使用: ...
- JVM-类文件结构
无关性的基石 I> "平台无关性"实现在操作系统的应用层上:sun公司以及其他虚拟机提供商发布了许多可以运行在各种不同平台上的虚拟机,这些虚拟机都可以载入和执行同一种平台无关 ...
- ODI中web service介绍
ODI WS架构
- SqlServer DateDiff函数 比较时间 (转)
DateDiff函数 是一个非常有用的函数,它可以为一些网页做一些特殊的效果. 我就曾用到它和一张'new'字样的图片 来区别网页显示的信息是否为最近的信息.例如:提示最近的通知,最近的新闻等等 ...
- ACM - 动态规划专题 题目整理
CodeForces 429B Working out 预处理出从四个顶点到某个位置的最大权值,再枚举相遇点,相遇的时候只有两种情况,取最优解即可. #include<iostream> ...
- Ogre1.8地形和天空盒的建立(一块地形)
转自:http://www.cnblogs.com/WindyMax/ 研究Ogre的程序笔记 编译环境 WIN7 32 VS2008 Ogre的版本 1.8 Ogre的地形算法是采用Geome ...
- PHP文件系统处理(二)
1.文件的打开和关闭(读文件中的内容,向文件中写内容) 读取文件中的内容 file_get_contents() //php5以上 < ...
- 【LeetCode OJ】Pascal's Triangle
Prolbem Link: http://oj.leetcode.com/problems/pascals-triangle/ Just a nest-for-loop... class Soluti ...
- Asp.Net请求管道中的19个事件
请求管道中的19个事件.(1)BeginRequest: 开始处理请求(2)AuthenticateRequest授权验证请求,获取用户授权信息(3):PostAuthenticateRequest获 ...
- iOS ARC和MRC混编
如果一个工程为MRC,其中需要添加ARC的文件: 选择target -> build phases -> compile sources ->单击ARC的文件将compil ...