bzoj 1951: [Sdoi2010]古代猪文
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#define ll long long
#define mul 999911659
using namespace std;
int n,g,a[];
int sh[]={,,,},C1[][];
void exgcd(int a1,int a2,int &x,int &y)
{
if(!a2)
{
x=;
y=;
return;
}
exgcd(a2,a1%a2,x,y);
int t=x;
x=y;
y=t-a1/a2*y;
}
int kuai(ll n,int k,int p)
{
int ans=;
for(;k;)
{
if(k%)
ans=(ans*n)%p;
n=(n*n)%p;
k/=;
}
return ans;
}
int C(int n,int m,int p)
{
if(n<m)
return ;
return C1[p][n]*kuai(C1[p][m]*C1[p][n-m],sh[p]-,sh[p])%sh[p];
}
int lucas(int n,int m,int p)
{
if(!m)
return ;
return (C(n%sh[p],m%sh[p],p)*lucas(n/sh[p],m/sh[p],p))%sh[p];
}
int solve()
{
int x,y,a1,b1,a2,b2;
a1=sh[];
b1=a[];
for(int i=;i<;i++)
{
a2=sh[i];
b2=a[i];
exgcd(a1,a2,x,y);
x=((b2-b1)*x%a2+a2)%a2;
b1=b1+x*a1;
a1=a1*a2;
}
return b1;
}
int main()
{
scanf("%d%d",&n,&g);
if(g==mul)
{
printf("0\n");
return ;
}
for(int i=;i<;i++)
{
C1[i][]=;
for(int j=;j<=sh[i];j++)
C1[i][j]=(C1[i][j-]*j)%sh[i];
}
for(int i=;i<=sqrt(n);i++)
if(n%i==)
{
for(int j=;j<;j++)
{
a[j]=(a[j]+lucas(n,i,j))%sh[j];
if(i!=n/i)
a[j]=(a[j]+lucas(n,n/i,j))%sh[j];
}
}
printf("%d\n",kuai(g,solve(),mul));
return ;
}
经典的数学题。。。。
题目就有点难懂,求G^M mod P M=∑ i|N C(N,i) P=999911659
用lucas定理,中国剩余定理合并模线性方程组。http://hzwer.com/4407.html
bzoj 1951: [Sdoi2010]古代猪文的更多相关文章
- BZOJ 1951: [Sdoi2010]古代猪文( 数论 )
显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...
- BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2194 Solved: 919[Submit][Status] ...
- 【刷题】BZOJ 1951 [Sdoi2010]古代猪文
Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...
- bzoj 1951 [Sdoi2010]古代猪文(数论知识)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1951 [思路] 一道优(e)秀(xin)的数论题. 首先我们要求的是(G^sigma{ ...
- bzoj 1951 [Sdoi2010]古代猪文 ——数学综合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 数学综合题. 费马小定理得指数可以%999911658,又发现这个数可以质因数分解.所 ...
- BZOJ.1951.[SDOI2010]古代猪文(费马小定理 Lucas CRT)
题目链接 \(Description\) 给定N,G,求\[G^{\sum_{k|N}C_n^k}\mod\ 999911659\] \(Solution\) 由费马小定理,可以先对次数化简,即求\( ...
- bzoj 1951: [Sdoi2010]古代猪文 【中国剩余定理+欧拉定理+组合数学+卢卡斯定理】
首先化简,题目要求的是 \[ G^{\sum_{i|n}C_{n}^{i}}\%p \] 对于乘方形式快速幂就行了,因为p是质数,所以可以用欧拉定理 \[ G^{\sum_{i|n}C_{n}^{i} ...
- BZOJ 1951 [SDOI2010]古代猪文 (组合数学+欧拉降幂+中国剩余定理)
题目大意:求$G^{\sum_{m|n} C_{n}^{m}}\;mod\;999911659\;$的值$(n,g<=10^{9})$ 并没有想到欧拉定理.. 999911659是一个质数,所以 ...
- BZOJ 1951: [Sdoi2010]古代猪文 ExCRT+欧拉定理+Lucas
欧拉定理不要忘记!! #include <bits/stdc++.h> #define N 100000 #define ll long long #define ull unsigned ...
随机推荐
- iOS添加Prefix Header
1. 添加Prefix Header 注: Xcode 6苹果默认去掉prefix Header, 用以提高原文件的复用性, 便于迁移. 并且可以一定程度上减少Build Time. 解决办法: (1 ...
- Object Pascal 方法与技巧
4 方法与技巧 4.1 设置代码模板 代码模板是Delphi 的代码感知特性的一种,通过它可以快速.高效和正确地输入代码.代码模板将一些常用的语句块保存在模板中,然后程序员只要在代码编辑器中按下“Ct ...
- Android中的启动模式(下)
在这篇文章中,我会继续跟大家分享有关于Android中启动模式的相关知识.当然,如果对这个启动模式还不完全了解或者没有听过的话,可以先看看我之前写的有关于这个知识点的入门篇Android的启动模式(上 ...
- 激活MyEclipse 6.5方法-通过一段Java程序生成激活码
在MyEclipse中新建一个Java类,名为MyEclipseKeyGen,将下面的Java代码拷贝到MyEclipseKeyGen类中,先修改变量subscriber的值,然后运行程序即可获得Su ...
- fedora 14安装经验
初学linux系统,在win7 系统上安装VMware9.0,并用虚拟机安装fedora.安装了好几次,虽然还是没有彻底通透,但也有一点点心得,特地分享一下: 我安装fedora用于嵌入式ARM开发练 ...
- winScp 跳板机到服务器
http://jingyan.baidu.com/article/454316ab6ffe1af7a7c03a31.html?qq-pf-to=pcqq.group
- OneProxy与其它数据库中间件的对比
OneProxy 优点 性能 缺点 闭源,被商业公司掌控,到时候随别人蹂躏 可维护性极差,缺乏友好的出错信息,光维护这个环节就被他人掌控 定价不明 有没有这样的公司? 大到10wtps,但是没人能理解 ...
- Eclipse远程调试出现“JDWP Transport dt_socket failed to initialize”的解决方案
欢迎关注我的社交账号: 博客园地址: http://www.cnblogs.com/jiangxinnju/p/4781259.html GitHub地址: https://github.com/ji ...
- 【CodeForces 651A】Joysticks 模拟
题意:给定a,b,每个单位时间可以将a,b中一台加1,一台减2,求最久可以支持多久. #include <cstdio> #include <algorithm> using ...
- String的那一大堆事儿--1
perfTimeStr = perfTimeStr.replace(perfTimeStr.substring(0,4), "____"); perfTimeStr = perfT ...