Persistent Bookcase

Problem Description:

Recently in school Alina has learned what are the persistent data structures: they are data structures that always preserves the previous version of itself and access to it when it is modified.

After reaching home Alina decided to invent her own persistent data structure. Inventing didn't take long: there is a bookcase right behind her bed. Alina thinks that the bookcase is a good choice for a persistent data structure. Initially the bookcase is empty, thus there is no book at any position at any shelf.

The bookcase consists of n shelves, and each shelf has exactly m positions for books at it. Alina enumerates shelves by integers from 1 to n and positions at shelves — from 1 to m. Initially the bookcase is empty, thus there is no book at any position at any shelf in it.

Alina wrote down q operations, which will be consecutively applied to the bookcase. Each of the operations has one of four types:

1 i j — Place a book at position j at shelf i if there is no book at it.

2 i j — Remove the book from position j at shelf i if there is a book at it.

3 i — Invert book placing at shelf i. This means that from every position at shelf i which has a book at it, the book should be removed, and at every position at shelf i which has not book at it, a book should be placed.

4 k — Return the books in the bookcase in a state they were after applying k-th operation. In particular, k = 0 means that the bookcase should be in initial state, thus every book in the bookcase should be removed from its position.

After applying each of operation Alina is interested in the number of books in the bookcase. Alina got 'A' in the school and had no problem finding this values. Will you do so?

Input:

The first line of the input contains three integers n, m and q (1 ≤ n, m ≤ 103, 1 ≤ q ≤ 105) — the bookcase dimensions and the number of operations respectively.

The next q lines describes operations in chronological order — i-th of them describes i-th operation in one of the four formats described in the statement.

It is guaranteed that shelf indices and position indices are correct, and in each of fourth-type operation the number k corresponds to some operation before it or equals to 0.

Output:

For each operation, print the number of books in the bookcase after applying it in a separate line. The answers should be printed in chronological order.

Sample Input:

2 3 3

1 1 1

3 2

4 0

4 2 6

3 2

2 2 2

3 3

3 2

2 2 2

3 2

2 2 2

3 2

2 2 1

Sample Output:

1

4

0

2

1

3

3

2

4

2

1

一般的dfs都要回溯。

【题目链接】Codeforces 707D

【题目类型】dfs+bitset

&题意:

n层(标记1n)书架,每层有m个位置(标记1m),现有以下四种操作:

①1 i j:在书架的第i层第j个位置放置一本书(若此处原本没有书);

②2 i j:取走书架的第i层第j个位置的书(若此处原本有书);

③3 i:将书架第i层每个位置作如下处理,若该位置有书,则拿走;若没有书,则放置一本书;

④4 k:将书架的状态恢复至第k次操作之后的状态,若k=0,则恢复初始状态,即书架上没有一本书

问每次操作之后,书架上有多少本书

&题解:

首先你要去看看这个博客:博客链接 这上面把思路已经说的很清楚了,我在补充点:

这题是一个离线的题,什么叫离线呢?就是存到数组里处理,之后在输出的题(貌似是这样的- -)然而知道这个并没有什么卵用。这题有两个难点。

1.建树:应该学习下这种建树的方式。vector[i]中i是父亲,后面的是儿子,还要注意是把这一个状态接到父亲那里,所以每次push_back的都是i。并且qu询问数组要从1开始存,因为我们要找一个最大的父亲,是0,他只有儿子,所以要从1开始。

2.dfs:dfs的时候,必须要清楚的知道dfs的参数代表的是什么?我的代码里的x代表的是父亲,循环里的v代表的是儿子,也可以想成x的下一个状态就是v,之后就是处理3种情况了,但为什么没有第4种呢?因为第4种在建树的时候就已经处理了,连上了以前的边,每次dfs的时候都会走到,所以就不用在特判第4种了。

还有,要注意dfs是给ans赋值tot的时候,一定是给ans[v]=tot 而不是ans[x]=tot,这块我调了好长时间才发现的,因为我们求的是第v次询问的答案,而不是第x次的,因为v代表的是这个状态,而x是上个状态。

【时间复杂度】O(n*q)

&代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
#define cle(a,val) memset(a,(val),sizeof(a))
const int MAXN = 1000 + 5 ;
const int MAXQ = 100000 + 5 ;
bitset<MAXN> pos[MAXN];
int qu[MAXQ][3], sum[MAXN], n, m, q;
ll ans[MAXQ];
vector<int>tree[MAXQ];
ll tot;
void dfs(int x) {
for (int i = 0; i < tree[x].size(); i++) {
int v = tree[x][i];
bool did = 0;
if (qu[v][0] == 1 && !pos[qu[v][1]].test(qu[v][2])) {
pos[qu[v][1]].set(qu[v][2]);
sum[qu[v][1]]++;
tot++;
did = 1;
}
if (qu[v][0] == 2 && pos[qu[v][1]].test(qu[v][2])) {
pos[qu[v][1]].reset(qu[v][2]);
sum[qu[v][1]]--;
tot--;
did = 1;
}
if (qu[v][0] == 3) {
int d = sum[qu[v][1]];
sum[qu[v][1]] = m - d;
tot += sum[qu[v][1]] - d;
pos[qu[v][1]].flip();
}
ans[v] = tot;
dfs(v);
if (qu[v][0] == 1 && did) {
pos[qu[v][1]].reset(qu[v][2]);
sum[qu[v][1]]--;
tot--;
}
if (qu[v][0] == 2 && did) {
pos[qu[v][1]].set(qu[v][2]);
sum[qu[v][1]]++;
tot++;
}
if (qu[v][0] == 3) {
int d = sum[qu[v][1]];
sum[qu[v][1]] = m - d;
tot += sum[qu[v][1]] - d;
pos[qu[v][1]].flip();
}
}
}
void Solve() {
while (~scanf("%d %d %d", &n, &m, &q)) {
for (int i = 1; i <= q; i++) {
scanf("%d", &qu[i][0]);
if (qu[i][0] <= 2) {
scanf("%d %d", &qu[i][1], &qu[i][2]);
tree[i - 1].push_back(i);
}
else {
scanf("%d", &qu[i][1]);
if (qu[i][0] == 3) tree[i - 1].push_back(i);
else tree[qu[i][1]].push_back(i);
}
}
tot = 0;
dfs(0);
for (int i = 1; i <= q; i++) {
printf("%I64d\n", ans[i]);
}
}
}
int main() {
Solve();
return 0;
}

Codeforces Round #368 (Div. 2) D. Persistent Bookcase的更多相关文章

  1. Codeforces Round #368 (Div. 2) D. Persistent Bookcase 离线 暴力

    D. Persistent Bookcase 题目连接: http://www.codeforces.com/contest/707/problem/D Description Recently in ...

  2. Codeforces Round #368 (Div. 2)D. Persistent Bookcase DFS

    题目链接:http://codeforces.com/contest/707/my 看了这位大神的详细分析,一下子明白了.链接:http://blog.csdn.net/queuelovestack/ ...

  3. Codeforces Round #368 (Div. 2)

    直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...

  4. Codeforces Round #368 (Div. 2) C. Pythagorean Triples(数学)

    Pythagorean Triples 题目链接: http://codeforces.com/contest/707/problem/C Description Katya studies in a ...

  5. Codeforces Round #368 (Div. 2) B. Bakery (模拟)

    Bakery 题目链接: http://codeforces.com/contest/707/problem/B Description Masha wants to open her own bak ...

  6. Codeforces Round #368 (Div. 2) A. Brain's Photos (水题)

    Brain's Photos 题目链接: http://codeforces.com/contest/707/problem/A Description Small, but very brave, ...

  7. D. Persistent Bookcase(Codeforces Round #368 (Div. 2))

    D. Persistent Bookcase time limit per test 2 seconds memory limit per test 512 megabytes input stand ...

  8. Codeforces Round #368 (Div. 2) E. Garlands 二维树状数组 暴力

    E. Garlands 题目连接: http://www.codeforces.com/contest/707/problem/E Description Like all children, Ale ...

  9. Codeforces Round #368 (Div. 2) C. Pythagorean Triples 数学

    C. Pythagorean Triples 题目连接: http://www.codeforces.com/contest/707/problem/C Description Katya studi ...

随机推荐

  1. 2016 MIPT Pre-Finals Workshop Taiwan NTU Contest

    2016弱校联盟十一专场10.5 传送门 A. As Easy As Possible 假设固定左端点,那么每次都是贪心的匹配\(easy\)这个单词. 从\(l\)开始匹配的单词,将\(y\)的位置 ...

  2. 简单实用的Android ORM框架TigerDB

    TigerDB是一个简单的Android ORM框架,它能让你一句话实现数据库的增删改查,同时支持实体对象的持久化和自动映射,同时你也不必关心表结构的变化,因为它会自动检测新增字段来更新你的表结构. ...

  3. MySQL – optimizer_search_depth

    Working on customer case today I ran into interesting problem – query joining about 20 tables (thank ...

  4. Cannot unwrap to requested type [javax.sql.DataSource]

    遇上这个bug我的情况是这样,hibernate4以后,spring3.1不再有hibernateDaoSupport,在dao层不能继承HibernateDaoSupport, 只能显式声明Sess ...

  5. shell之数组

    1.从数组的下标分为索引数组.关联数组 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 /* 索引数组,即通常情况下所说的数组 */ var ary1 = [1,3,5, ...

  6. 解决 nginx https反向代理http协议 302重定向localtion到http问题

    location /rest { #proxy_redirect off; proxy_set_header Host $host; proxy_set_header X-Real-IP $remot ...

  7. Spring的依赖注入(DI)三种方式

    Spring依赖注入(DI)的三种方式,分别为: 1.  接口注入 2.  Setter方法注入 3.  构造方法注入 下面介绍一下这三种依赖注入在Spring中是怎么样实现的. 首先我们需要以下几个 ...

  8. js,jquery概念理解

    js,jquery都是一种脚本语言,编写代码,实现页面的dom操作,特效等功能. 区别: 1.jquery"写的更少,做的更多"; 2.使用jquery需要导入jquery文件. ...

  9. HTML 属性

    HTML 属性 HTML 元素 HTML 标题 属性为 HTML 元素提供附加信息. HTML 属性 HTML 标签可以拥有属性.属性提供了有关 HTML 元素的更多的信息. 属性总是以名称/值对的形 ...

  10. LintCode "Sliding Window Median" & "Data Stream Median"

    Besides heap, multiset<int> can also be used: class Solution { void removeOnly1(multiset<in ...