Paths on a Grid

Time Limit: 1000MS Memory Limit: 30000K

Total Submissions: 23008 Accepted: 5683

Description

Imagine you are attending your math lesson at school. Once again, you are bored because your teacher tells things that you already mastered years ago (this time he’s explaining that (a+b)2=a2+2ab+b2). So you decide to waste your time with drawing modern art instead.

Fortunately you have a piece of squared paper and you choose a rectangle of size n*m on the paper. Let’s call this rectangle together with the lines it contains a grid. Starting at the lower left corner of the grid, you move your pencil to the upper right corner, taking care that it stays on the lines and moves only to the right or up. The result is shown on the left:

Really a masterpiece, isn’t it? Repeating the procedure one more time, you arrive with the picture shown on the right. Now you wonder: how many different works of art can you produce?

Input

The input contains several testcases. Each is specified by two unsigned 32-bit integers n and m, denoting the size of the rectangle. As you can observe, the number of lines of the corresponding grid is one more in each dimension. Input is terminated by n=m=0.

Output

For each test case output on a line the number of different art works that can be generated using the procedure described above. That is, how many paths are there on a grid where each step of the path consists of moving one unit to the right or one unit up? You may safely assume that this number fits into a 32-bit unsigned integer.

Sample Input

5 4

1 1

0 0

Sample Output

126

2

Source

Ulm Local 2002

从(0,0)走到(n,m)总共需要你n+m步,其中n步向右,m步向左,问题就转化为n+m步中选n步向右的方法或选m步向上的方法,(两种方式等价).注意处理数据超范围的问题

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <map>
#include <algorithm>
#define INF 0x3f3f3f3f
using namespace std; typedef unsigned long long LL; const int MAX = 1e5+10; int main()
{
LL n,m;
LL sum;
LL up,dn;
while(scanf("%I64u %I64u",&n,&m)&&(n||m))
{
sum=n+m;
n=min(n,m);
up=1;
dn=1;
for(LL i=1,j=sum;i<=n;i++,j--)
{
up*=j;
dn*=i;
if(up%dn==0)
{
up/=dn;
dn=1;
}
}
printf("%I64u\n",up);
}
return 0;
}

Paths on a Grid(简单组合数学)的更多相关文章

  1. POJ1942——Paths on a Grid(组合数学)

    Paths on a Grid DescriptionImagine you are attending your math lesson at school. Once again, you are ...

  2. [ACM] POJ 1942 Paths on a Grid (组合)

    Paths on a Grid Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 21297   Accepted: 5212 ...

  3. Paths on a Grid(规律)

    Paths on a Grid Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 23270   Accepted: 5735 ...

  4. poj1942 Paths on a Grid(无mod大组合数)

    poj1942 Paths on a Grid 题意:给定一个长m高n$(n,m \in unsigned 32-bit)$的矩形,问有几种走法.$n=m=0$时终止. 显然的$C(m+n,n)$ 但 ...

  5. POJ 1942:Paths on a Grid

    Paths on a Grid Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22918   Accepted: 5651 ...

  6. poj 1924 Paths on a Grid(组合数学)

    题目:http://poj.org/problem?id=1942 题意:给定一个矩形网格的长m和高n,其中m和n都是unsigned int32类型,一格代表一个单位,就是一步,求从左下角到右上角有 ...

  7. Paths on a Grid POJ - 1942 组合数学 (组合数的快速计算)

    题意:格路问题 没什么难度 难点在于如何快速计算相对较大的组合数 思路:运用手写计算组合数的方式进行计算  如c(8,3) 如果手算就是   8*7*6/(3*2*1)这样可以很快得解出 计算代码为: ...

  8. POJ - 1942 D - Paths on a Grid

    Imagine you are attending your math lesson at school. Once again, you are bored because your teacher ...

  9. 搭建selenium grid简单配置

    1.使用selenium提供的服务端独立jar包 :服务端.客户端都是运行于java7环境. 2.启动hub: hub配置文件如下: Java -jar selenium-server-standal ...

随机推荐

  1. C# 以管理员方式启动Winform,进而使用管理员控制Windows Service

    问题起因: 1,) 问题自动分析Windows服务在正常运行时,确实会存在程序及人为原因导致该服务停止.为了在应用程序使用时确保该服务正常运行,于是有了该讨论主题. 2,)一般账户(尽管是管理员组账户 ...

  2. MongoDB(一):安装

    安装 从度娘上搜索MongoDB,找到官网地址:https://www.mongodb.com 找到下载中心地址:https://www.mongodb.com/download-center 我下载 ...

  3. SqlServer跨库查询

    由于业务的拆分,数据库拆分为两种作用: 汇总数据库(Master,头节点数据库), 子节点数据库(Compute Node,计算子节点数据库) 这样,就设计到子节点访问头节点数据库中的某张汇总表,这种 ...

  4. Leetcode: String to Integer

    Implement atoi to convert a string to an integer. Hint: Carefully consider all possible input cases. ...

  5. zoj The 12th Zhejiang Provincial Collegiate Programming Contest May Day Holiday

    http://acm.zju.edu.cn/onlinejudge/showContestProblem.do?problemId=5500 The 12th Zhejiang Provincial ...

  6. ACM常用算法及练习(1)

    ACM常用算法及练习 第一阶段:练经典常用算法,下面的每个算法给我打上十到二十遍,同时自己精简代码,因为太常用,所以要练到写时不用想,10-15分钟内打完,甚至关掉显示器都可以把程序打出来. 1.最短 ...

  7. [转]Hibernate不能自动建表解决办法及Hibernate不同数据库的连接及SQL方言

    最近开始学Hibernate,看的是李刚的那本<轻量级java ee企业应用实战>.头一个hibernate程序,我原原本本的按照书上例子写下来,同时只是改动了些mysql的连接参数,并且 ...

  8. Java基础(1):Switch语句注意的5个地方

    不得不说的几点小秘密: 1. switch 后面小括号中表达式的值必须是整型或字符型 2. case 后面的值可以是常量数值,如 1.2:也可以是一个常量表达式,如 2+2 :但不能是变量或带有变量的 ...

  9. sql查询所有表以及表名的模糊查询

    --1.查看所有表名:select name from sysobjects where type='U'--2.查找包含用户的表名,可通过以下SQL语句实现, Select * From sysob ...

  10. 为archlinux安装mplayer

    很简单的一条命令: pacman -S mplayer 安装完之后是字符界面的,所以你还需要一个图形前端: pacman -S gnome-mplayer