Paths on a Grid(简单组合数学)
Paths on a Grid
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 23008 Accepted: 5683
Description
Imagine you are attending your math lesson at school. Once again, you are bored because your teacher tells things that you already mastered years ago (this time he’s explaining that (a+b)2=a2+2ab+b2). So you decide to waste your time with drawing modern art instead.
Fortunately you have a piece of squared paper and you choose a rectangle of size n*m on the paper. Let’s call this rectangle together with the lines it contains a grid. Starting at the lower left corner of the grid, you move your pencil to the upper right corner, taking care that it stays on the lines and moves only to the right or up. The result is shown on the left:
Really a masterpiece, isn’t it? Repeating the procedure one more time, you arrive with the picture shown on the right. Now you wonder: how many different works of art can you produce?
Input
The input contains several testcases. Each is specified by two unsigned 32-bit integers n and m, denoting the size of the rectangle. As you can observe, the number of lines of the corresponding grid is one more in each dimension. Input is terminated by n=m=0.
Output
For each test case output on a line the number of different art works that can be generated using the procedure described above. That is, how many paths are there on a grid where each step of the path consists of moving one unit to the right or one unit up? You may safely assume that this number fits into a 32-bit unsigned integer.
Sample Input
5 4
1 1
0 0
Sample Output
126
2
Source
Ulm Local 2002
从(0,0)走到(n,m)总共需要你n+m步,其中n步向右,m步向左,问题就转化为n+m步中选n步向右的方法或选m步向上的方法,(两种方式等价).注意处理数据超范围的问题
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <map>
#include <algorithm>
#define INF 0x3f3f3f3f
using namespace std;
typedef unsigned long long LL;
const int MAX = 1e5+10;
int main()
{
LL n,m;
LL sum;
LL up,dn;
while(scanf("%I64u %I64u",&n,&m)&&(n||m))
{
sum=n+m;
n=min(n,m);
up=1;
dn=1;
for(LL i=1,j=sum;i<=n;i++,j--)
{
up*=j;
dn*=i;
if(up%dn==0)
{
up/=dn;
dn=1;
}
}
printf("%I64u\n",up);
}
return 0;
}
Paths on a Grid(简单组合数学)的更多相关文章
- POJ1942——Paths on a Grid(组合数学)
Paths on a Grid DescriptionImagine you are attending your math lesson at school. Once again, you are ...
- [ACM] POJ 1942 Paths on a Grid (组合)
Paths on a Grid Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 21297 Accepted: 5212 ...
- Paths on a Grid(规律)
Paths on a Grid Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 23270 Accepted: 5735 ...
- poj1942 Paths on a Grid(无mod大组合数)
poj1942 Paths on a Grid 题意:给定一个长m高n$(n,m \in unsigned 32-bit)$的矩形,问有几种走法.$n=m=0$时终止. 显然的$C(m+n,n)$ 但 ...
- POJ 1942:Paths on a Grid
Paths on a Grid Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22918 Accepted: 5651 ...
- poj 1924 Paths on a Grid(组合数学)
题目:http://poj.org/problem?id=1942 题意:给定一个矩形网格的长m和高n,其中m和n都是unsigned int32类型,一格代表一个单位,就是一步,求从左下角到右上角有 ...
- Paths on a Grid POJ - 1942 组合数学 (组合数的快速计算)
题意:格路问题 没什么难度 难点在于如何快速计算相对较大的组合数 思路:运用手写计算组合数的方式进行计算 如c(8,3) 如果手算就是 8*7*6/(3*2*1)这样可以很快得解出 计算代码为: ...
- POJ - 1942 D - Paths on a Grid
Imagine you are attending your math lesson at school. Once again, you are bored because your teacher ...
- 搭建selenium grid简单配置
1.使用selenium提供的服务端独立jar包 :服务端.客户端都是运行于java7环境. 2.启动hub: hub配置文件如下: Java -jar selenium-server-standal ...
随机推荐
- jsp中${param.user}不解析,原样输出。
没加<%@ page isELIgnored="false"%>
- win7无线网连接了,但是图标显示未连接
第一步: 打开控制面板,找到“管理工具”->“计算机管理” 第二步: 在控制台左边栏,选择“设备管理器”,然后在右侧展开“网络适配器” 第三步: 在每一个网络设备上点鼠标右键,然后选择“卸载”. ...
- zoj The 12th Zhejiang Provincial Collegiate Programming Contest Capture the Flag
http://acm.zju.edu.cn/onlinejudge/showContestProblem.do?problemId=5503 The 12th Zhejiang Provincial ...
- iOS 检查版本号的代码
- (void)checkNewVersion{ if ([@"appStore" isEqualToString:CHANNEL]) { AFHTTPRequestOperati ...
- java 枚举类小结 Enum
好久没有接触枚举类了,差不多都忘了,今天抽出个时间总结一下吧.说实话,枚举类确实能够给我们带来很大的方便. 说明:枚举类它约定了一个范围,可以理解成只可以生成固定的几个对象让外界去调用,故枚举类中的构 ...
- 验证你的邮箱是不是qq邮箱
Console.WriteLine("请输入你的qq邮箱"); string yx = Console.ReadLine(); int a = yx.LastIndexOf(&qu ...
- Windows 2003/2008更改远程桌面端口脚本
保存为bat文件,点击运行按提示输入新端口自动完成,直接下载更改远程桌面端口脚本 @echo off color 0a title @@ 修改Windows XP/2003/2008远程桌面服务端 ...
- ssh & display
在Windows下用ssh连接服务器的话putty是一个小巧而且实用的工具,如果想要图形界面,可以使用X工具配合putty. 或者直接使用xmanager enterprise,非 常方便. 如果在U ...
- MOPSO 多目标例子群优化算法
近年来,基于启发式的多目标优化技术得到了很大的发展,研究表明该技术比经典方法更实用和高效.有代表性的多目标优化算法主要有NSGA.NSGA-II.SPEA.SPEA2.PAES和PESA等.粒子群优化 ...
- jquery冲突细节
使用jquery报一个错误,之前也遇到过,今天记录下来,方便以后使用 Uncaught TypeError: Object #<Object> has no method 'test' 这 ...