Paths on a Grid

Time Limit: 1000MS Memory Limit: 30000K

Total Submissions: 23008 Accepted: 5683

Description

Imagine you are attending your math lesson at school. Once again, you are bored because your teacher tells things that you already mastered years ago (this time he’s explaining that (a+b)2=a2+2ab+b2). So you decide to waste your time with drawing modern art instead.

Fortunately you have a piece of squared paper and you choose a rectangle of size n*m on the paper. Let’s call this rectangle together with the lines it contains a grid. Starting at the lower left corner of the grid, you move your pencil to the upper right corner, taking care that it stays on the lines and moves only to the right or up. The result is shown on the left:

Really a masterpiece, isn’t it? Repeating the procedure one more time, you arrive with the picture shown on the right. Now you wonder: how many different works of art can you produce?

Input

The input contains several testcases. Each is specified by two unsigned 32-bit integers n and m, denoting the size of the rectangle. As you can observe, the number of lines of the corresponding grid is one more in each dimension. Input is terminated by n=m=0.

Output

For each test case output on a line the number of different art works that can be generated using the procedure described above. That is, how many paths are there on a grid where each step of the path consists of moving one unit to the right or one unit up? You may safely assume that this number fits into a 32-bit unsigned integer.

Sample Input

5 4

1 1

0 0

Sample Output

126

2

Source

Ulm Local 2002

从(0,0)走到(n,m)总共需要你n+m步,其中n步向右,m步向左,问题就转化为n+m步中选n步向右的方法或选m步向上的方法,(两种方式等价).注意处理数据超范围的问题

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <map>
#include <algorithm>
#define INF 0x3f3f3f3f
using namespace std; typedef unsigned long long LL; const int MAX = 1e5+10; int main()
{
LL n,m;
LL sum;
LL up,dn;
while(scanf("%I64u %I64u",&n,&m)&&(n||m))
{
sum=n+m;
n=min(n,m);
up=1;
dn=1;
for(LL i=1,j=sum;i<=n;i++,j--)
{
up*=j;
dn*=i;
if(up%dn==0)
{
up/=dn;
dn=1;
}
}
printf("%I64u\n",up);
}
return 0;
}

Paths on a Grid(简单组合数学)的更多相关文章

  1. POJ1942——Paths on a Grid(组合数学)

    Paths on a Grid DescriptionImagine you are attending your math lesson at school. Once again, you are ...

  2. [ACM] POJ 1942 Paths on a Grid (组合)

    Paths on a Grid Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 21297   Accepted: 5212 ...

  3. Paths on a Grid(规律)

    Paths on a Grid Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 23270   Accepted: 5735 ...

  4. poj1942 Paths on a Grid(无mod大组合数)

    poj1942 Paths on a Grid 题意:给定一个长m高n$(n,m \in unsigned 32-bit)$的矩形,问有几种走法.$n=m=0$时终止. 显然的$C(m+n,n)$ 但 ...

  5. POJ 1942:Paths on a Grid

    Paths on a Grid Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22918   Accepted: 5651 ...

  6. poj 1924 Paths on a Grid(组合数学)

    题目:http://poj.org/problem?id=1942 题意:给定一个矩形网格的长m和高n,其中m和n都是unsigned int32类型,一格代表一个单位,就是一步,求从左下角到右上角有 ...

  7. Paths on a Grid POJ - 1942 组合数学 (组合数的快速计算)

    题意:格路问题 没什么难度 难点在于如何快速计算相对较大的组合数 思路:运用手写计算组合数的方式进行计算  如c(8,3) 如果手算就是   8*7*6/(3*2*1)这样可以很快得解出 计算代码为: ...

  8. POJ - 1942 D - Paths on a Grid

    Imagine you are attending your math lesson at school. Once again, you are bored because your teacher ...

  9. 搭建selenium grid简单配置

    1.使用selenium提供的服务端独立jar包 :服务端.客户端都是运行于java7环境. 2.启动hub: hub配置文件如下: Java -jar selenium-server-standal ...

随机推荐

  1. ForkJoin框架

    1. 什么是Fork/Join框架 Fork/Join框架是Java7提供了的一个用于并行执行任务的框架, 是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架. 我们再通过 ...

  2. SQL 数据库 right join 和left join 的区别

    left join(左联接) 返回包括左表中的所有记录和右表中联结字段相等的记录 right join(右联接) 返回包括右表中的所有记录和左表中联结字段相等的记录inner join(等值连接) 只 ...

  3. (转)json+flexgrid+jbox组合运用页面刷新<jsp>

    插件效果 1.JSP页面 1 <%@ page language="java" contentType="text/html; charset=UTF-8" ...

  4. 转:python webdriver API 之鼠标事件

    前面例子中我们已经学习到可以用 click()来模拟鼠标的单击操作,而我们在实际的 web 产品测试中 发现,有关鼠标的操作,不单单只有单击,有时候还要和到右击,双击,拖动等操作,这些操作包含在Act ...

  5. [Linux]可用于管道操作的命令

    管道命令——| command1 | command2 | command3 注:管道命令必须能够接受来自前一个命令的数据成为standard input继续处理. cut 将一段信息的某一段切出来, ...

  6. 数据库 SQL基础

    数据库是用来存取数据的. 数据库类型: ACESS(比较小,存储少) SQL SERVER (.net) MySQL Oracle(java) 数据库:服务.界面 服务是可以操作的后台的程序. 界面是 ...

  7. php session memcache

    ini_set("session.save_handler", "memcache"); ini_set("session.save_path&quo ...

  8. 部署ganglia3.7

    环境 centOS6.6 gmetad节点关闭iptable gmetad和httpd只需要在一台节点安装,gmond需要在每台节点上安装. 一.安装epel源 sudo wget http://do ...

  9. c++命名规则

    命名规则根据不同公司有略微不同,这里按照google c++的编程标准1.文件名-全部用小写字母和下划线或横线组成,例如my_useful_class.ccmy-useful-class.ccmyus ...

  10. jquery选项卡切换

    <%@ page language="java" contentType="text/html; charset=utf-8" pageEncoding= ...