一、查看数据

1.查看DataFrame前xx行或后xx行
a=DataFrame(data);
a.head(6)表示显示前6行数据,若head()中不带参数则会显示全部数据。
a.tail(6)表示显示后6行数据,若tail()中不带参数则也会显示全部数据。

2.查看DataFrame的index,columns以及values
a.index ; a.columns ; a.values 即可

3.describe()函数对于数据的快速统计汇总
a.describe()对每一列数据进行统计,包括计数,均值,std,各个分位数等。

4.对数据的转置
a.T

5.对轴进行排序
a.sort_index(axis=1,ascending=False);
其中axis=1表示对所有的columns进行排序,下面的数也跟着发生移动。后面的ascending=False表示按降序排列,参数缺失时默认升序。

6.对DataFrame中的值排序
a.sort(columns='x')
即对a中的x这一列,从小到大进行排序。注意仅仅是x这一列,而上面的按轴进行排序时会对所有的columns进行操作。

二、选择对象

1.选择特定列和行的数据
a['x'] 那么将会返回columns为x的列,注意这种方式一次只能返回一个列。a.x与a['x']意思一样。

取行数据,通过切片[]来选择
如:a[0:3] 则会返回前三行的数据。

2.通过标签来选择
a.loc['one']则会默认表示选取行为'one'的行;

a.loc[:,['a','b'] ] 表示选取所有的行以及columns为a,b的列;

a.loc[['one','two'],['a','b']] 表示选取'one'和'two'这两行以及columns为a,b的列;

a.loc['one',''a]与a.loc[['one'],['a']]作用是一样的,不过前者只显示对应的值,而后者会显示对应的行和列标签。

3.通过位置来选择
这与通过标签选择类似
a.iloc[1:2,1:2] 则会显示第一行第一列的数据;(切片后面的值取不到)

a.iloc[1:2] 即后面表示列的值没有时,默认选取行位置为1的数据;

a.iloc[[0,2],[1,2]] 即可以自由选取行位置,和列位置对应的数据。

4.使用条件来选择
使用单独的列来选择数据
a[a.c>0] 表示选择c列中大于0的数据

使用where来选择数据
a[a>0] 表直接选择a中所有大于0的数据

使用isin()选出特定列中包含特定值的行
a1=a.copy()
a1[a1['one'].isin(['2','3'])] 表显示满足条件:列one中的值包含'2','3'的所有行。

三、设置值(赋值)

赋值操作在上述选择操作的基础上直接赋值即可。
例a.loc[:,['a','c']]=9 即将a和c列的所有行中的值设置为9
a.iloc[:,[1,3]]=9 也表示将a和c列的所有行中的值设置为9

同时也依然可以用条件来直接赋值
a[a>0]=-a 表示将a中所有大于0的数转化为负值

四、缺失值处理

在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中。

1.reindex()方法
用来对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝。
a.reindex(index=list(a.index)+['five'],columns=list(b.columns)+['d'])

a.reindex(index=['one','five'],columns=list(b.columns)+['d'])

即用index=[]表示对index进行操作,columns表对列进行操作。

2.对缺失值进行填充
a.fillna(value=x)
表示用值为x的数来对缺失值进行填充

3.去掉包含缺失值的行
a.dropna(how='any')
表示去掉所有包含缺失值的行

五、合并

1.contact
contact(a1,axis=0/1,keys=['xx','xx','xx',...]),其中a1表示要进行进行连接的列表数据,axis=1时表横着对数据进行连接。axis=0或不指定时,表将数据竖着进行连接。a1中要连接的数据有几个则对应几个keys,设置keys是为了在数据连接以后区分每一个原始a1中的数据。

例:a1=[b['a'],b['c']]
result=pd.concat(a1,axis=1,keys=['1','2'])

2.Append 将一行或多行数据连接到一个DataFrame上
a.append(a[2:],ignore_index=True)
表示将a中的第三行以后的数据全部添加到a中,若不指定ignore_index参数,则会把添加的数据的index保留下来,若ignore_index=Ture则会对所有的行重新自动建立索引。

3.merge类似于SQL中的join
设a1,a2为两个dataframe,二者中存在相同的键值,两个对象连接的方式有下面几种:
(1)内连接,pd.merge(a1, a2, on='key')
(2)左连接,pd.merge(a1, a2, on='key', how='left')
(3)右连接,pd.merge(a1, a2, on='key', how='right')
(4)外连接, pd.merge(a1, a2, on='key', how='outer')
至于四者的具体差别,具体学习参考sql中相应的语法。

六、分组(groupby)

用pd.date_range函数生成连续指定天数的的日期
pd.date_range('20000101',periods=10)

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd data={
'date':pd.date_range('',periods=10),
'gender':np.random.randint(0,2,size=10),
'height':np.random.randint(40,50,size=10),
'weight':np.random.randint(150,180,size=10)
}
a=pd.DataFrame(data)
#print(a)
b=a.groupby('gender').size()
c=a.groupby('gender').sum()
print(c)
print(b)

输出的结果为:

所有grouby是以里面的参数为标准,去分组,然后去统计相对应的数量

比如:

b=a.groupby('gender').size()

是统计以gender类型的个数

而:

c=a.groupby('gender').sum()

是统计以gender类型的其他属性的个数

按gender对gender进行分类,对应为数字的列会自动求和,而为字符串类型的列则不显示;当然也可以同时groupby(['x1','x2',...])多个字段,其作用与上面类似。

b=a.groupby(level=0).size()
c=a.groupby(level=0).sum()

输出结果为:

即按index分组并求和,就是根据前面的行号进行分组,得出来的数据

由上图可知:如果是sum的话,就只是列出具有数值型的数据出来,如果是size的话,就是列出每一列的个数出来。

其还有mean()的方法

如果有必要,其实就是原理就是对哪个类型,进行以谁为分组,然后进行统计该数值得和或者是平均值都可以。

如果是对进行分组的类别进行计算大小的话,就是使用.size()的方法。

七、Categorical按某一列重新编码分类

如六中要对a中的gender进行重新编码分类,将对应的0,1转化为male,female,过程如下:

a['gender1']=a['gender'].astype('category')
a['gender1'].cat.categories=['male','female'] #即将0,1先转化为category类型再进行编码。 print(a)得到的结果为:
date gender height weight gender1
0 2000-01-01 1 40 163 female
1 2000-01-02 0 44 177 male
2 2000-01-03 1 40 167 female
3 2000-01-04 0 41 161 male
4 2000-01-05 0 48 177 male
5 2000-01-06 1 46 179 female
6 2000-01-07 1 42 154 female
7 2000-01-08 1 43 170 female
8 2000-01-09 0 46 158 male
9 2000-01-10 1 44 168 female

八、相关操作

描述性统计:
1.a.mean() 默认对每一列的数据求平均值;若加上参数a.mean(1)则对每一行求平均值;

2.统计某一列x中各个值出现的次数:a['x'].value_counts();

3.对数据应用函数
a.apply(lambda x:x.max()-x.min())
表示返回所有列中最大值-最小值的差。

4.字符串相关操作
a['gender1'].str.lower() 将gender1中所有的英文大写转化为小写,注意dataframe没有str属性,只有series有,所以要选取a中的gender1字段。

九、时间序列

在六中用pd.date_range('xxxx',periods=xx,freq='D/M/Y....')函数生成连续指定天数的的日期列表。
例如pd.date_range('20000101',periods=10),其中periods表示持续频数;
pd.date_range('20000201','20000210',freq='D')也可以不指定频数,只指定其实日期。

此外如果不指定freq,则默认从起始日期开始,频率为day。其他频率表示如下:

pandas进行数据分析需要的一些操作的更多相关文章

  1. python requests抓取NBA球员数据,pandas进行数据分析,echarts进行可视化 (前言)

    python requests抓取NBA球员数据,pandas进行数据分析,echarts进行可视化 (前言) 感觉要总结总结了,希望这次能写个系列文章分享分享心得,和大神们交流交流,提升提升. 因为 ...

  2. 基于 Python 和 Pandas 的数据分析(2) --- Pandas 基础

    在这个用 Python 和 Pandas 实现数据分析的教程中, 我们将明确一些 Pandas 基础知识. 加载到 Pandas Dataframe 的数据形式可以很多, 但是通常需要能形成行和列的数 ...

  3. 基于 Python 和 Pandas 的数据分析(1)

    基于 Python 和 Pandas 的数据分析(1) Pandas 是 Python 的一个模块(module), 我们将用 Python 完成接下来的数据分析的学习. Pandas 模块是一个高性 ...

  4. Python 数据分析:让你像写 Sql 语句一样,使用 Pandas 做数据分析

    Python 数据分析:让你像写 Sql 语句一样,使用 Pandas 做数据分析 一.加载数据 import pandas as pd import numpy as np url = ('http ...

  5. 万字长文,Python数据分析实战,使用Pandas进行数据分析

    文章目录 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做案例的人,却不知道如何去学习更加高深的知识.那么针对这三类人,我给大家 ...

  6. 基于 Python 和 Pandas 的数据分析(4) --- 建立数据集

    这一节我想对使用 Python 和 Pandas 的数据分析做一些扩展. 假设我们是亿万富翁, 我们会想要多元化地进行投资, 比如股票, 分红, 金融市场等, 那么现在我们要聚焦房地产市场, 做一些这 ...

  7. python 抓取金融数据,pandas进行数据分析并可视化系列 (一)

    终于盼来了不是前言部分的前言,相当于杂谈,算得上闲扯,我觉得很多东西都是在闲扯中感悟的,比如需求这东西,一个人只有跟自己沟通好了,总结出某些东西了,才能更好的和别人去聊,去说. 今天这篇写的是明白需求 ...

  8. 基于 Python 和 Pandas 的数据分析(3) --- 输入/输出 基础

    这一节, 我们要讨论 Pandas 的输入与输出, 并且应用在现实的实际例子中. 为了得到大量的数据, 向大家推荐一个网站 Quandl. Quandl 有很多免费和付费的资源. 这个网站最大的优势在 ...

  9. pandas:数据分析

    一.介绍 pandas是一个强大的Python数据分析的工具包,是基于NumPy构建的. 1.主要功能 具备对其功能的数据结构DataFrame.Series 集成时间序列功能 提供丰富的数学运算和操 ...

随机推荐

  1. 2013 Multi-University Training Contest 10

    HDU-4698 Counting 题意:给定一个二维平面,其中x取值为1-N,y取值为1-M,现给定K个点,问至少包括K个点中的一个的满足要求的<Xmin, Xmax, Ymin, Ymax& ...

  2. main函数中argc理解

    其实: int main(int argc,char *argv[])是UNIX和Linux中的标准写法,而int main()只是UNIX及Linux默许的用法..void main(int arg ...

  3. [转载] 高效 MacBook 工作环境配置

    原文: http://mp.weixin.qq.com/s?__biz=MjM5NzMyMjAwMA==&mid=208231200&idx=1&sn=8a76ddc56c1f ...

  4. 使用SurfaceView

    一.新建一个工程“LearnSurfaceView” 二.新建一个类“MySurfaceView” public class MySurfaceView extends SurfaceView imp ...

  5. Eclipse插件Target Management (RSE)

    陶醉篇--Eclipse插件Target Management (RSE),RSE即Remote System Explorer 2008年11月29日 星期六 下午 10:27 Target Man ...

  6. PCA in Bioinformatics

    光看原理和代码是没用的,得看看具体算法在实际中的用途,多看看文献. Principal component analysis for clustering gene expression data

  7. EL表达式 (详解)(转)

    EL表达式      1.EL简介 1)语法结构        ${expression} 2)[]与.运算符      EL 提供.和[]两种运算符来存取数据.      当要存取的属性名称中包含一 ...

  8. js encodeURI方法认识

    很早就知道js中encodeURI方法,也很早就用过,但是每次看到它总感觉有些陌生,因为不知道到底是什么原理,和普通的编码到底什么关系, 今天在查看w3c api时又遇到了她,正好有空就多看了几眼,突 ...

  9. struts2文件下载相关信息

    struts.xml文件配置: <span style="font-size:16px;"><?xml version="1.0" encod ...

  10. python 练习 9

    #!/usr/bin/python # -*- coding: UTF-8 -*- for i in range(1,5): for j in range(1,5): for k in range(1 ...