题目传送门:https://www.luogu.org/problem/show?pid=2647

题目描述

现在你面前有n个物品,编号分别为1,2,3,……,n。你可以在这当中任意选择任意多个物品。其中第i个物品有两个属性Wi和Ri,当你选择了第i个物品后,你就可以获得Wi的收益;但是,你选择该物品以后选择的所有物品的收益都会减少Ri。现在请你求出,该选择哪些物品,并且该以什么样的顺序选取这些物品,才能使得自己获得的收益最大。

注意,收益的减少是会叠加的。比如,你选择了第i个物品,那么你就会获得了Wi的收益;然后你又选择了第j个物品,你又获得了Wj-Ri收益;之后你又选择了第k个物品,你又获得了Wk-Ri-Rj的收益;那么你获得的收益总和为Wi+(Wj-Ri)+(Wk-Ri-Rj)。

输入输出格式

INPUT:

第一行一个正整数n,表示物品的个数。

接下来第2行到第n+1行,每行两个正整数Wi和Ri,含义如题目所述。

OUTPUT:

输出仅一行,表示最大的收益。

输入输出样例

输入样例#1:

2
5 2
3 5 输出样例#1:
6

//样例解释:我们可以选择1号物品,获得了5点收益;之后我们再选择2号物品,获得3-2=1点收益。最后总的收益值为5+1=6。

说明

  20%的数据满足:n<=5,0<=Wi,Ri<=1000。

  50%的数据满足:n<=15,0<=Wi,Ri<=1000。

  100%的数据满足:n<=3000,0<=Wi,Ri<=200000。

SOLUTION 1:暴力枚举出每个物品选或不选,生成物品选取顺序的全排列,暴力求最优解。时间复杂度O(2^n*n!)。期望得分20分。

SOLUTION 2:不难发现我们可以对题目进行一个等价的转换,即倒序选取,选取第 i 件物品会使之前所有选取的物品收益减少Ri。

          由此可以得出贪心策略:首先对所有物品按照R由大到小排序,枚举每个物品选或不选,求出最优解。

          时间复杂度O(2^n)。期望得分50分。

SOLUTION 3:受SOL2启发,我们可以设计一个动态规划策略,f[i][j] 表示前 i 个物品取 j 个的最大收益,

        不难发现其状态转移方程为:f[i][j]=max(f[i-1][j],f[i-1][j-1]+w[i]-r[i]*(j-1))   ,

        边界条件f[1][1]=w[1]  f[1][0]=0  ,其中物品按照R由小到大排序,

        ans=max(f[n][i]) ,

        时间复杂度O(n^2),期望得分100分。

 #include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std; struct thing {
int a,b;
} e[]; bool cmp(const thing x,const thing y) {
return x.b>y.b;
} int n,ans,f[][]; int main() {
scanf("%d",&n);
for (int i=; i<=n; i++) scanf("%d%d",&e[i].a,&e[i].b);
sort(e+,e+n+,cmp);
f[][]=;
f[][]=e[].a;
for (int i=; i<=n; i++) {
for (int j=; j<=i; j++)
f[i][j]=max(f[i-][j],f[i-][j-]+e[i].a-e[i].b*(j-));
}
for (int i=; i<=n; i++) ans=max(ans,f[n][i]);
printf("%d",ans);
}

[luogu P2647] 最大收益(贪心+dp)的更多相关文章

  1. luogu 2577 [ZJOI2005]午餐 贪心+dp

    发现让 $b$ 更大的越靠前越优,然后依次决策将每个人分给哪个窗口. 令 $f[i][j]$ 表示考虑了前 $i$ 个人,且第一个窗口的总等待时间为 $j$ 的最小总时间. 然后转移一下就好了~ #i ...

  2. 洛谷P2647 最大收益

    P2647 最大收益 题目描述 现在你面前有n个物品,编号分别为1,2,3,……,n.你可以在这当中任意选择任意多个物品.其中第i个物品有两个属性Wi和Ri,当你选择了第i个物品后,你就可以获得Wi的 ...

  3. P2647 最大收益

    题目描述 现在你面前有n个物品,编号分别为1,2,3,……,n.你可以在这当中任意选择任意多个物品.其中第i个物品有两个属性Wi和Ri,当你选择了第i个物品后,你就可以获得Wi的收益:但是,你选择该物 ...

  4. 【BZOJ-3174】拯救小矮人 贪心 + DP

    3174: [Tjoi2013]拯救小矮人 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 686  Solved: 357[Submit][Status ...

  5. BZOJ_3174_[Tjoi2013]拯救小矮人_贪心+DP

    BZOJ_3174_[Tjoi2013]拯救小矮人_贪心+DP Description 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀 ...

  6. 洛谷P4823 拯救小矮人 [TJOI2013] 贪心+dp

    正解:贪心+dp 解题报告: 传送门! 我以前好像碰到过这题的说,,,有可能是做过类似的题qwq? 首先考虑这种显然是dp?就f[i][j]:决策到了地i个人,跑了j个的最大高度,不断更新j的上限就得 ...

  7. 【bzoj5073】[Lydsy1710月赛]小A的咒语 后缀数组+倍增RMQ+贪心+dp

    题目描述 给出 $A$ 串和 $B$ 串,从 $A$ 串中选出至多 $x$ 个互不重合的段,使得它们按照原顺序拼接后能够得到 $B$ 串.求是否可行.多组数据. $T\le 10$ ,$|A|,|B| ...

  8. 【bzoj3174】[Tjoi2013]拯救小矮人 贪心+dp

    题目描述 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀上,知道最顶端的小矮人伸直胳膊可以碰到陷阱口.对于每一个小矮人,我们知道他从脚 ...

  9. hdu 1257 最少拦截系统【贪心 || DP——LIS】

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1257 http://acm.hust.edu.cn/vjudge/contest/view.action ...

随机推荐

  1. Spring学习笔记之Constructor-based or setter-based DI?

    如果是强制依赖,那么使用构造器注入,如果是可选依赖,那么使用set方法注入.Spring鼓励构造器注入,可以确保依赖项不为null, Since you can mix constructor-bas ...

  2. 获取Android系统的版本号

    int currentVersion = android.os.Build.VERSION.SDK_INT;

  3. (转载)Htmlparser Filter 简要归纳

    1 . 逻辑关系:与或非 AndFilter()           Creates a new instance of an AndFilter. AndFilter(NodeFilter[] pr ...

  4. Visual Studio安装过程

    在这里需要先跟老师说一声抱歉,因为编写代码的愿意,我早在大一的时候就已经安装并且购买了正版的VS2013.所以今天在这里实在无法全部描述VS2013的安装过程. 然而,我所知的是,VS2013相对于我 ...

  5. AlarmManager

    转自:http://blog.csdn.net/wangxingwu_314/article/details/8060312 1.AlarmManager,顾名思义,就是“提醒”,是Android中常 ...

  6. iOS App上架流程(2016详细版

    http://www.jianshu.com/p/b1b77d804254 iOS App上传项目遇到的问题 http://www.jianshu.com/p/9195cd991fc7

  7. C#获取项目程序及运行路径的方法

    1.asp.net webform用“Request.PhysicalApplicationPath获取站点所在虚拟目录的物理路径,最后包含“\”: 2.c# winform用 A:“Applicat ...

  8. 解密SQL SERVER 2005加密存储过程,函数

    在SQL SERVER 2005中必须用专用管理连接才可以查看过程过程中用到的表 EG:sqlcmd -A 1>use test 2>go 1>sp_decrypt 'p_testa ...

  9. classPath

    问 spring mvc的web.xml中这个地方的classpath是什么意思? spring springmvc java swnuv 2015年09月25日提问 关注 5 关注 收藏 0 收藏, ...

  10. hadoop环境搭建遇到问题集锦

    1  在hadoop的bin目录下, 运行hadoop version命令,提示“hadoop:没有此命令” 解决办法: ./hadoop version或者$HADOOP_HOME/bin放在PAT ...