hdu 3836 Equivalent Sets
题目连接
http://acm.hdu.edu.cn/showproblem.php?pid=3836
Equivalent Sets
Description
To prove two sets A and B are equivalent, we can first prove A is a subset of B, and then prove B is a subset of A, so finally we got that these two sets are equivalent.
You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.
Now you want to know the minimum steps needed to get the problem proved.
Input
The input file contains multiple test cases, in each case, the first line contains two integers N <= 20000 and M <= 50000.
Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.
Output
For each case, output a single integer: the minimum steps needed.
Sample Input
4 0
3 2
1 2
1 3
Sample Output
4
3
题目大意:给你一张有向图要求最少加多少条边时该图变成强连通图。
Tarjan缩点。。
#include<bits/stdc++.h>
using namespace std;
const int N = 20100;
struct Tarjan_scc {
stack<int> s;
bool instack[N];
struct edge { int to, next; }G[N * 3];
int idx, scc, tot, in[N], out[N], dfn[N], low[N], head[N], sccnum[N];
inline void init(int n) {
idx = scc = tot = 0;
while (!s.empty()) s.pop();
for (int i = 0; i < n + 2; i++) {
head[i] = -1;
instack[i] = false;
in[i] = out[i] = dfn[i] = low[i] = sccnum[i] = 0;
}
}
inline void add_edge(int u, int v) {
G[tot].to = v, G[tot].next = head[u], head[u] = tot++;
}
inline void built(int m) {
int u, v;
while (m--) {
scanf("%d %d", &u, &v);
add_edge(u, v);
}
}
inline void tarjan(int u) {
dfn[u] = low[u] = ++idx;
instack[u] = true;
s.push(u);
for (int i = head[u]; ~i; i = G[i].next) {
int &v = G[i].to;
if (!dfn[v]) {
tarjan(v);
low[u] = min(low[u], low[v]);
} else if (instack[v] && dfn[v] < low[u]) {
low[u] = dfn[v];
}
}
if (dfn[u] == low[u]) {
int v = 0;
scc++;
do {
v = s.top(); s.pop();
instack[v] = false;
sccnum[v] = scc;
} while (u != v);
}
}
inline void solve(int n, int m) {
init(n);
built(m);
for (int i = 1; i <= n; i++) {
if (!dfn[i]) tarjan(i);
}
int x1 = 0, x2 = 0;
for (int u = 1; u <= n; u++) {
for (int i = head[u]; ~i; i = G[i].next) {
int v = G[i].to;
if (sccnum[u] != sccnum[v]) {
in[sccnum[v]]++;
out[sccnum[u]]++;
}
}
}
for (int i = 1; i <= scc; i++) {
if (!in[i]) x1++;
if (!out[i]) x2++;
}
printf("%d\n", 1 == scc ? 0 : max(x1, x2));
}
}go;
int main() {
#ifdef LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w+", stdout);
#endif
int n, m;
while (~scanf("%d %d", &n, &m)) {
go.solve(n, m);
}
return 0;
}
hdu 3836 Equivalent Sets的更多相关文章
- [tarjan] hdu 3836 Equivalent Sets
主题链接: http://acm.hdu.edu.cn/showproblem.php? pid=3836 Equivalent Sets Time Limit: 12000/4000 MS (Jav ...
- hdu 3836 Equivalent Sets trajan缩点
Equivalent Sets Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Other ...
- hdu 3836 Equivalent Sets(强连通分量--加边)
Equivalent Sets Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Other ...
- hdu——3836 Equivalent Sets
Equivalent Sets Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Other ...
- hdu 3836 Equivalent Sets(tarjan+缩点)
Problem Description To prove two sets A and B are equivalent, we can first prove A is a subset of B, ...
- hdu - 3836 Equivalent Sets(强连通)
http://acm.hdu.edu.cn/showproblem.php?pid=3836 判断至少需要加几条边才能使图变成强连通 把图缩点之后统计入度为0的点和出度为0的点,然后两者中的最大值就是 ...
- HDU - 3836 Equivalent Sets (强连通分量+DAG)
题目大意:给出N个点,M条边.要求你加入最少的边,使得这个图变成强连通分量 解题思路:先找出全部的强连通分量和桥,将强连通分量缩点.桥作为连线,就形成了DAG了 这题被坑了.用了G++交的,结果一直R ...
- hdoj 3836 Equivalent Sets【scc&&缩点】【求最少加多少条边使图强连通】
Equivalent Sets Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Other ...
- HUD——T 3836 Equivalent Sets
http://acm.hdu.edu.cn/showproblem.php?pid=3836 Time Limit: 12000/4000 MS (Java/Others) Memory Lim ...
随机推荐
- OpenGL ES学习笔记(一)——基本用法、绘制流程与着色器编译
首先声明下,本文为笔者学习<OpenGL ES应用开发实践指南(Android卷)>的笔记,涉及的代码均出自原书,如有需要,请到原书指定源码地址下载. 在Android.iOS等移动平台上 ...
- 【教程】【FLEX】#002 请求服务端数据(UrlLoader)
为什么Flex需要请求服务端读取数据,而不是自己读取? Flex 是一门界面语言,主要是做界面展示的,它能实现很多绚丽的效果,这个是传统Web项目部能比的. 但是它对数据库和文件的读写 没有良好的支持 ...
- Flex 使用列表和表格
Flex 设计了不同的控件来实现列表和表格,不仅能够将数据显示在表格和列表中,还可以实现对数据进行操纵,修改等更加强大的功能. 与列表和表格相关的控件如下所示: 列表控件(List Control): ...
- 【LeetCode】17. Letter Combinations of a Phone Number
题目: 思路:设置两个List,一个存储当前层,一个存储最终层 public class Solution { public List<String> letterCombinations ...
- Exercises - Kangaroo
Write a definition for a class named Kangaroo with the following methods: An __init__ method that in ...
- oracle 闪回技术
oracle默认不启动闪回数据库 如果需要启动闪回数据库,数据库需要设置为归档模式,并启用恢复区. 1.查看是否启动闪回删除 SQL> show parameter recyclebin; NA ...
- java学习之(内部类)
大部分时候,类被定义成一个独立的程序单元,在某些情况下,也会把一个类放在另一个类的内部定义,这个定义在其他类内部的类就被称为内部类,内部类有如下特点: 1.内部类提供了更好的封闭,可以把内部类隐 ...
- 处理程序“WebServiceHandlerFactory-Integrated”在其模块列表中有一个错误模块“ManagedPipelineHandler”
开发web项目时需要安装IIS,在安装好IIS的Windows7本上发布asp.net网站时,web程序已经映射到了本地IIS上,但运行如下错误提示“处理程序“PageHandlerFactory-I ...
- ubuntu下,apt的参数使用,很实用呦
ubuntu下apt-get 命令参数 常用的APT命令参数 apt-cache search package 搜索包 apt-cache show package 获取包的相关信息,如说明.大小.版 ...
- 雷兽的数据库CAP乱谈之(一)阐述
今天有人问我cap,找了https://my.oschina.net/lilw/blog/169776这片文字, 下面是cap那篇文字的解释: 所谓CAP理论,即: Cosistency ...