hdu 4965 Fast Matrix Calculation
题目链接:hdu 4965,题目大意:给你一个 n*k 的矩阵 A 和一个 k*n 的矩阵 B,定义矩阵 C= A*B,然后矩阵 M= C^(n*n),矩阵中一切元素皆 mod 6,最后求出 M 中所有元素的和。题意很明确了,便赶紧敲了个矩阵快速幂的模板(因为编程的基本功不够还是调试了很久),然后提交后TLE了,改了下细节,加了各种特技,比如输入优化什么的,还是TLE,没办法,只好搜题解,看了别人的题解后才知道原来 A*B 已经是 n*n 的矩阵了,所以(A*B)n*n 的快速幂里的每个乘法都是 n3 级别的了,n 的上限为1000,这样子超时也不奇怪了,怎么办呢,原来是要转化一下:(A*B)n*n= A*(B*A)n*n-1*A,这样子的话,B*A 是 k*k 的矩阵,乘法是 k3 级别的,k<=6,就不会超时了,这个转化果然好厉害!
如果结构体内直接开个数组的话会超内存,要用指向一维数组的指针来 new 才行,不过还是很容易出错:
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
#define For(i,s,t) for(int i=s; i<=t; ++i)
const int mod= ;
const int maxn= ; struct matrix{
int n,m, (*a)[maxn]= NULL;
matrix(int n=, int m=):n(n),m(m){
a= new int[n+][maxn];
For(i,,n) For(j,,m)
a[i][j]= ;
}
void identity(){
For(i,,n) a[i][i]= ;
}
matrix operator *(const matrix &m2) const {
matrix mul(n,m2.m);
For(i,,n) For(j,,m2.m) For(k,,m)
mul.a[i][j]= (mul.a[i][j]+a[i][k]*m2.a[k][j]%mod)%mod;
return mul;
}
int sum(){
int ans= ;
For(i,,n) For(j,,m)
ans+= a[i][j];
return ans;
}
void clear() { delete[] a; }
}; matrix quick_mod(matrix m2, int p){
matrix ans(m2.n,m2.m);
ans.identity();
while(p){
if(p&) ans= ans*m2;
m2= m2*m2;
p>>=;
}
return ans;
} void read(int &x){
x= ;
char ch= getchar();
while(!isdigit(ch)) ch= getchar();
while(isdigit(ch)){
x= x*+(ch-''+);
ch= getchar();
}
} int main(){
int n,k;
read(n); read(k);
while(){
if(!n || !k) break;
matrix A(n,k), B(k,n), tmp(k,k), C(n,n);
For(i,,n) For(j,,k) read(A.a[i][j]);
For(i,,k) For(j,,n) read(B.a[i][j]);
tmp= B*A;
tmp= quick_mod(tmp,n*n-);
C= A*tmp*B;
printf("%d\n",C.sum());
read(n); read(k);
A.clear();
B.clear();
tmp.clear();
C.clear();
}
return ;
}
用指向一维数组的指针貌似挺耗费内存的,于是改用了二级指针来试下,果然内存和效率都明显有了很大的提高(但好像还是比不上 vector 耶~):
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
#define For(i,s,t) for(int i=s; i<=t; ++i)
const int mod= ;
const int maxn= ; struct matrix{
int n,m, **a= NULL;
matrix(int n=, int m=):n(n),m(m){
a= new int *[n+];
For(i,,n) a[i]= new int[m+];
For(i,,n) For(j,,m)
a[i][j]= ;
}
void identity(){
For(i,,n) a[i][i]= ;
}
matrix operator *(const matrix &m2) const {
matrix mul(n,m2.m);
For(i,,n) For(j,,m2.m) For(k,,m)
mul.a[i][j]= (mul.a[i][j]+a[i][k]*m2.a[k][j]%mod)%mod;
return mul;
}
int sum(){
int ans= ;
For(i,,n) For(j,,m)
ans+= a[i][j];
return ans;
}
void clear(){
For(i,,n) delete a[i];
delete a;
a = NULL;
}
}; matrix quick_mod(matrix m2, int p){
matrix ans(m2.n,m2.m);
ans.identity();
while(p){
if(p&) ans= ans*m2;
m2= m2*m2;
p>>=;
}
return ans;
} void read(int &x){
x= ;
char ch= getchar();
while(!isdigit(ch)) ch= getchar();
while(isdigit(ch)){
x= x*+(ch-''+);
ch= getchar();
}
} int main(){
int n,k;
read(n); read(k);
while(){
if(!n || !k) break;
matrix A(n,k), B(k,n), tmp(k,k), C(n,n);
For(i,,n) For(j,,k) read(A.a[i][j]);
For(i,,k) For(j,,n) read(B.a[i][j]);
tmp= B*A;
tmp= quick_mod(tmp,n*n-);
C= A*tmp*B;
printf("%d\n",C.sum());
read(n); read(k);
A.clear();
B.clear();
tmp.clear();
C.clear();
}
return ;
}
后来无意中看到别人的代码用 vector 来代替动态数组就行,不用自己手动 new 和 delete 了,确实方便了好多:
#include<cstdio>
#include<cstring>
#include<cctype>
#include<vector>
#include<algorithm>
using namespace std;
#define For(i,s,t) for(int i=s; i<=t; ++i)
const int mod= ;
const int maxn= ; struct matrix{
int n,m;
vector<vector<int> > a;
matrix(int n=, int m=):n(n),m(m){
a.resize(n+);
For(i,,n) a[i].resize(m+,);
}
void identity(){
For(i,,n) a[i][i]= ;
}
matrix operator *(const matrix &m2) const {
matrix mul(n,m2.m);
For(i,,n) For(j,,m2.m) For(k,,m)
mul.a[i][j]= (mul.a[i][j]+a[i][k]*m2.a[k][j]%mod)%mod;
return mul;
}
int sum(){
int ans= ;
For(i,,n) For(j,,m)
ans+= a[i][j];
return ans;
}
~matrix() {
For(i,,n) a[i].clear();
a.clear();
}
}; matrix quick_mod(matrix m2, int p){
matrix ans(m2.n,m2.m);
ans.identity();
while(p){
if(p&) ans= ans*m2;
m2= m2*m2;
p>>=;
}
return ans;
} void read(int &x){
x= ;
char ch= getchar();
while(!isdigit(ch)) ch= getchar();
while(isdigit(ch)){
x= x*+(ch-''+);
ch= getchar();
}
} int main(){
int n,k;
read(n); read(k);
while(){
if(!n || !k) break;
matrix A(n,k), B(k,n), tmp(k,k), C(n,n);
For(i,,n) For(j,,k) read(A.a[i][j]);
For(i,,k) For(j,,n) read(B.a[i][j]);
tmp= B*A;
tmp= quick_mod(tmp,n*n-);
C= A*tmp*B;
printf("%d\n",C.sum());
read(n); read(k);
}
return ;
}
看来自己曾经引以为傲的矩阵快速幂还差得很远啊~~总之得加把劲了!
hdu 4965 Fast Matrix Calculation的更多相关文章
- hdu 4965 Fast Matrix Calculation(矩阵高速幂)
题目链接.hdu 4965 Fast Matrix Calculation 题目大意:给定两个矩阵A,B,分别为N*K和K*N. 矩阵C = A*B 矩阵M=CN∗N 将矩阵M中的全部元素取模6,得到 ...
- HDU 4965 Fast Matrix Calculation(矩阵高速幂)
HDU 4965 Fast Matrix Calculation 题目链接 矩阵相乘为AxBxAxB...乘nn次.能够变成Ax(BxAxBxA...)xB,中间乘n n - 1次,这样中间的矩阵一个 ...
- HDU - 4965 Fast Matrix Calculation 【矩阵快速幂】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4965 题意 给出两个矩阵 一个A: n * k 一个B: k * n C = A * B M = (A ...
- HDU 4965 Fast Matrix Calculation 矩阵快速幂
题意: 给出一个\(n \times k\)的矩阵\(A\)和一个\(k \times n\)的矩阵\(B\),其中\(4 \leq N \leq 1000, \, 2 \leq K \leq 6\) ...
- HDU 4965 Fast Matrix Calculation 矩阵乘法 乘法结合律
一种奇葩的写法,纪念一下当时的RE. #include <iostream> #include <cstdio> #include <cstring> #inclu ...
- hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律
http://acm.hdu.edu.cn/showproblem.php?pid=4965 2014 Multi-University Training Contest 9 1006 Fast Ma ...
- HDU4965 Fast Matrix Calculation —— 矩阵乘法、快速幂
题目链接:https://vjudge.net/problem/HDU-4965 Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Othe ...
- Fast Matrix Calculation HDU - 4965
One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...
- hdu4965 Fast Matrix Calculation 矩阵快速幂
One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...
随机推荐
- linux ubuntu12.04 解压中文zip文件,解压之后乱码
在windows下压缩后的zip包,在ubuntu下解压后显示为乱码问题 1.zip文件解压之后文件名乱码: 第一步 首先安装7zip和convmv(如果之前没有安装的话) 在命令行执行安装命令如下: ...
- js&jq 发送验证码倒计时
<input type="text" name='' id="btn"> //发送验证码倒计时var wait=30; function t ...
- JQuery知识快览之四—样式
前面我们获取了对象集,本文介绍怎么控制对象集的样式 基本概念 在一个html页面中,我们有两种方式来控制一个对象的样式,用HTML attribute控制,或者用CSS类来控制,这两种方法虽然都能控制 ...
- Uva 12563,劲歌金曲,01背包
题目链接:https://uva.onlinejudge.org/external/125/12563.pdf 题意:n首歌,每首歌的长度给出,还剩 t 秒钟,由于KTV不会在一首歌没有唱完的情况下切 ...
- Python网络爬虫Scrapy框架研究 以及 代理设置
地址:https://github.com/yidao620c/core-scrapy 例子:https://github.com/geekan/scrapy-examples 中文翻译文档: htt ...
- ASP.NET Webform和ASP.NET MVC的区别
ASP.NET WebForm ASP.NET Webform提供了一个类似于winform的事件响应GUI模型(event-driven GUI),隐藏了HTTP.HTML.JavaScript等细 ...
- Java开发、网络爬虫、自然语言处理、数据挖掘简介
一.java开发 (1) 应用开发,即Java SE开发,不属于java的优势所在,所以市场占有率很低,前途也不被看好. (2) web开发,即Java Web开发,主要是基于自有或第三方成熟框架的系 ...
- iOS奔溃日志总结
1,http://www.cnblogs.com/qingjoin/p/3515902.html 2,http://blog.csdn.net/u012269653/article/details/4 ...
- Cheatsheet: 2014 01.15 ~ 01.30
Web How to upload file in Node.js Create Echo Server in Node.js Near-Realtime Analytics with MongoDB ...
- Create Stacked Canvas to Scroll Horizontal Tabular Data Blocks In Oracle Forms
In this tutorial you will learn to create horizontal scrollable tabular or detail data block by usin ...