本文源于一次课题作业,部分自己写的,部分借用了网上的demo

  • 牛顿迭代法(1)
x=1:0.01:2;
y=x.^3-x.^2+sin(x)-1;
plot(x,y,'linewidth',2);grid on;%由图像可知 根在1.05到1.15之间 syms x
s0=diff(x^3-x^2+sin(x)-1,x,1);
% 得到s0= cos(x) - 2*x + 3*x^2
% 迭代方程为 y=x-(x.^3-x.^2+sin(x)-1)/(cos(x) - 2.*x + 3*x.^2)
clear;
x=1.15;
for i=1:30
x=x-(x.^3-x.^2+sin(x)-1)/(cos(x) - 2.*x + 3*x.^2)%根据牛顿迭代法公式。一直迭代计算30次。
end
%可得 x取值为1.0935;
  • 牛顿迭代法(2)
%%   绘制图形。判断跟的大概位置。
x=1:0.01:2;
f=x.^3-x.^2+sin(x)-1;
plot(x,f,'linewidth',2);grid on;%由图像可知 根在1.05到1.15之间
%%
clc,clear
syms x
f=x.^3-x.^2+sin(x)-1;%所求函数
df=diff(f,x); %求取一阶导数
eps=1e-4; %误差判断
x0=1.15; %迭代初始值。
cnt=0;
MAXCNT=20; %最大循环次数
while cnt<MAXCNT %防止无限循环
x1=x0-subs(f,x,x0)/subs(df,x,x0); %去掉这个分号,可以看到迭代过程.
if (abs(x1-x0)<eps)
break;
end
x0=x1;
cnt=cnt+1;
end
if cnt==MAXCNT
disp '不收敛'
else
vpa(x1,8)
end
  • LU分解法

被调函数:


function [L,U]=lufj(A)
% 利用紧凑格式法原理 编写的LU 分解
[n,m]=size(A); % 获取A矩阵的行和列
if m~=n %判断行列相等与否
error('Not a squared matrix1');
else
A(2:n)=A(2:n)/A(1,1);
for k=2:n-1
A(k,k:n)=A(k,k:n)-A(k,1:k-1)*A(1:k-1,k:n);
A(k+1:n,k)=(A(k+1:n,k)-A(k+1:n,1:k-1)*A(1:k-1,k))/A(k,k);
end %都是根据定义进行循环计算。
end
L=A;U=A;
for i=1:n
L(i,i)=1;
L(i,i+1:n)=0;
U(i,1:i-1)=0;
end

主函数:

%%  需要调用lufj函数;
A=[-2 -2 3 5
1 2 1 -2
2 5 3 -2
1 3 2 3]
b=[-1
4
7
0]
% x=A\b %左除法求解
[L,U]=lufj(A);
x0=L\b;
x=U\x0%求出的x即为解
  • 拉格朗日插值法

    被调函数:
function y=lagrange(x0,y0,x);
% 根据拉格朗日插值定义编写
n=length(x0);m=length(x);
for i=1:m
z=x(i);
s=0.0;%给s的初值
for k=1:n
p=1.0;
for j=1:n
if j~=k
p=p*(z-x0(j))/(x0(k)-x0(j));
end
end
s=p*y0(k)+s;
end
y(i)=s;
end

主函数:

x=[0,1,2,4];
y=[1,9,23,3];
y0=lagrange(x,y,1.5)
  • 牛顿插值

    被调函数:
function yi=New_Int(x,y,xi)
%Newton基本插值公式
%x为向量,全部的插值节点
%y为向量,差值节点处的函数值
%xi为标量,是自变量
%yi为xi出的函数估计值
n=length(x);
m=length(y);
if n~=m
error('The lengths of X ang Y must be equal!');
return;
end
%计算均差表Y
Y=zeros(n);
Y(:,1)=y';
for k=1:n-1
for i=1:n-k
if abs(x(i+k)-x(i))<eps
error('the DATA is error!');
return;
end
Y(i,k+1)=(Y(i+1,k)-Y(i,k))/(x(i+k)-x(i));
end
end
%计算牛顿插值公式
yi=0;
for i=1:n
z=1;
for k=1:i-1
z=z*(xi-x(k));
end
yi=yi+Y(1,i)*z;
end

主函数:

clear all
clc
x0=[0.4 0.55 0.65 0.80 0.90 1.05];
y0=[0.41075 0.57815 0.69675 0.88811 1.0265 1.25382];
x1=0.596; % 待插值点。
y1=New_Int(x0,y0,x1)% y1即为待插值点的函数值。

TIP:主函数和被调函数要放在一个文件夹内。否则会引起调用错误

NOTE:本文对基本方法做了总结,你可以结合理论知识再来看代码,希望对你有所帮助

Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法的更多相关文章

  1. LU分解法求逆矩阵 C语言实现

    最近在网上找了下,没有找到我想要的C语言版本,找到的也是错误的.故自己写了一个,并进行了相关测试,贴出来分享. 具体的LU分解算法就不细说了,随便找本书就知道了,关键是分解的处理流程,细节特别容易出错 ...

  2. Guass列选主元消去法和三角分解法

    最近数值计算学了Guass列主消元法和三角分解法解线性方程组,具体原理如下: 1.Guass列选主元消去法对于AX =B 1).消元过程:将(A|B)进行变换为,其中是上三角矩阵.即: k从1到n-1 ...

  3. MATLAB数值计算——0

    目录 MATLAB数值计算 1.solve() 2.fzero() 3.fsolve() MATLAB数值计算 MATLAB中文论坛基础板块常见问题归纳(出处: MATLAB中文论坛) 登录http: ...

  4. [Architecture] 系统架构正交分解法

    [Architecture] 系统架构正交分解法 前言 随着企业成长,支持企业业务的软件,也会越来越庞大与复杂.当系统复杂到一定程度,开发人员会发现很多系统架构的设计细节,很难有条理.有组织的用一张大 ...

  5. 非刚性图像配准 matlab简单示例 demons算法

    2011-05-25 17:21 非刚性图像配准 matlab简单示例 demons算法, % Clean clc; clear all; close all; % Compile the mex f ...

  6. 现代控制理论习题解答与Matlab程序示例

    现代控制理论习题解答与Matlab程序示例 现代控制理论 第三版 课后习题参考解答: http://download.csdn.net/detail/zhangrelay/9544934 下面给出部分 ...

  7. 时间序列分解-STL分解法

    时间序列分解-STL分解法 [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. STL(’Seasonal a ...

  8. 项目管理——WBS工作分解法

    首先我们要了解什么是WBS工作分解法 工作分解结构(Work Breakdown Structure,简称WBS)跟因数分解是一个原理,就是把一个项目,按一定的原则分解,项目分解成任务,任务再分解成一 ...

  9. 大规模问题的分解法-D-W分解法

    大规模线性规划问题的求解极具挑战性,在效率.存储和数值稳定性等方面对算法都有很高的要求.但是这类问题常常非常稀疏且有特殊结构,能够分解为若干个较小规模问题求解. 线性规划问题的目标函数和非负约束都可分 ...

随机推荐

  1. IE6、7下html标签间存在空白符,导致渲染后占用多余空白位置的原因及解决方法

    直接上图:原因:该div包含的内容是靠后台进行print操作,输出的.如果没有输出任何内容,浏览器会默认给该空白区域添加空白符.在IE6.7下,浏览器解析渲染时,会认为空白符也是占位置的,默认其具有字 ...

  2. 探索ASP.NET MVC5系列之~~~4.模型篇---包含模型常用特性和过度提交防御

    其实任何资料里面的任何知识点都无所谓,都是不重要的,重要的是学习方法,自行摸索的过程(不妥之处欢迎指正) 汇总:http://www.cnblogs.com/dunitian/p/4822808.ht ...

  3. ASP.NET Core应用针对静态文件请求的处理[2]: 条件请求与区间请求

    通过调用ApplicationBuilder的扩展方法UseStaticFiles注册的StaticFileMiddleware中间件帮助我们处理针对文件的请求.对于StaticFileMiddlew ...

  4. DBSCAN密度聚类算法

    DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法,和K-M ...

  5. 数据的双向绑定 Angular JS

    接触AngularJS许了,时常问自己一些问题,如果是我实现它,会在哪些方面选择跟它相同的道路,哪些方面不同.为此,记录了一些思考,给自己回顾,也供他人参考. 初步大致有以下几个方面: 数据双向绑定 ...

  6. VS2015在创建项目时的一些注意事项

    一.下面是在创建一个新的项目是我最常用的,现在对他们一一做一个详细的介绍: 1.Win32控制台应用程序我平时编写小的C/C++程序都用它,它应该是用的最多的. 2.名称和解决方案名称的区别:名称是项 ...

  7. 简单酷炫的canvas动画

    作为一个新人怀着激动而紧张的心情写了第一篇帖子还请大家多多支持,小弟在次拜谢. 驯鹿拉圣诞老人动画效果图如下 html如下: <div style="width:400px;heigh ...

  8. android Handler介绍

    Handler使用介绍: Handler根据接收的消息,处理UI更新.Thread线程发出消息,通知Handler更新UI. Handler mHandler = new Handler() {  p ...

  9. 在Linux配置Nginx web服务器步骤

    系统环境:centos7 需要软件:nginx-1.3.16.tar.gz   libevent-2.0.21-stable.tar.gz  Pcre 和 pcre-devel nginx下载地址:h ...

  10. [转]nopCommerce Widgets and How to Create One

    本文转自:https://dzone.com/articles/what-are-nopcommerce-widgets-and-how-to-create-one A widget is a sta ...