hdu 4651 Partition (利用五边形定理求解切割数)
下面内容摘自维基百科:
五边形数定理[编辑]
五边形数定理是一个由欧拉发现的数学定理,描写叙述欧拉函数展开式的特性[1] [2]。欧拉函数的展开式例如以下:
亦即
欧拉函数展开后,有些次方项被消去,仅仅留下次方项为1, 2, 5, 7, 12, ...的项次,留下来的次方恰为广义五边形数。
当中符号为- - + + - - + + .....
若将上式视为幂级数,其收敛半径为1,只是若仅仅是当作形式幂级数(formal
power series)来考虑,就不会考虑其收敛半径。
和切割函数的关系
当中为k的切割函数。
上式配合五边形数定理,能够得到
考虑项的系数,在
n>0 时,等式右側的系数均为0,比較等式二側的系数,可得
因此可得到切割函数p(n)的递归式
以n=10为例
-
- 知道这个定理的话,hdu 4651就能够直接套模板了
-
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<cstdio>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define MP make_pair
#define LL long long
#define CLR(a, b) memset(a, b, sizeof(a)) using namespace std; const int maxn = 100100;
const int INF = 0x3f3f3f3f;
const LL MOD = 1000000007; int fiv[maxn];
LL p[maxn]; void init()
{
int tot = 1;
for(int i = 1; fiv[tot - 1] < maxn; i ++)///五边形数
{
fiv[tot ++] = i*(3*i-1)/2;
fiv[tot ++] = i*(3*i+1)/2;
}
p[0] = 1;
for(int i = 1; i < maxn; i ++)///i的切割数p(i)
{
p[i] = 0;int flag = 1;
for(int j = 1; ; j ++)
{
if(fiv[j] <= i)
{
p[i] += flag * p[i - fiv[j]];
p[i] = (p[i] % MOD + MOD) % MOD;
}
else break;
if(j % 2 == 0) flag = -flag;
}
}
} int main()
{
int T, n;
init();
scanf("%d", &T);
while(T --)
{
scanf("%d", &n);
printf("%lld\n", p[n]);
}
}
hdu 4651 Partition (利用五边形定理求解切割数)的更多相关文章
- hdu 4651 Partition(整数拆分+五边形数)
Partition Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- hdu - 4651 - Partition
题意:把一个整数N(1 <= N <= 100000)拆分不超过N的正整数相加,有多少种拆法. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid ...
- hdu 4651 Partition && hdu 4658 Integer Partition——拆分数与五边形定理
题目:http://acm.hdu.edu.cn/showproblem.php?pid=4651 参考:https://blog.csdn.net/u013007900/article/detail ...
- hdu 4651 - Partition(五边形数定理)
定理详见维基百科....http://zh.wikipedia.org/wiki/%E4%BA%94%E9%82%8A%E5%BD%A2%E6%95%B8%E5%AE%9A%E7%90%86 代码如下 ...
- HDU 4651 Partition(整数拆分)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4651 题意:给出n.求其整数拆分的方案数. i64 f[N]; void init(){ f[0 ...
- HDU 4651 Partition 整数划分,可重复情况
Partition Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- HDU 4651 (生成函数)
HDU 4651 Partition Problem : n的整数划分方案数.(n <= 100008) Solution : 参考资料: 五角数 欧拉函数 五边形数定理 整数划分 一份详细的题 ...
- 利用JavaScript打印出Fibonacci数(不使用全局变量)
从汤姆大叔的博客里看到了6个基础题目:本篇是第4题 - 利用JavaScript打印出Fibonacci数(不使用全局变量) 解题关键: 1.Fibonacci数列的规律 2.递归 解点1:Fibon ...
- 回数是指从左向右读和从右向左读都是一样的数,例如 12321 , 909 。请利用 filter() 滤掉非回数
不管在什么地方,什么时候,学习是快速提升自己的能力的一种体现!!!!!!!!!!! 最近一段时间学习了廖雪峰老师学的Python学习资料,给自己的帮助很大,同时也学到的了很多,今天做了一道练习题,对于 ...
随机推荐
- htm、html、shtml区别
htm.html.shtml都是静态网页的后缀,三者也可以说都是只是扩展名不同,其他一样,都是静态的网页. htm和html是完全静态的网页不通过服务器编译解释直接送出给浏览器读取的静态网页,以htm ...
- MySQL安装(以程序的方式启动)zip版
电脑环境 win10 64位 企业版 1.解压zip文件到某路径下. 2.复制目录下的my-default.ini 改名字(my.ini) 3.打开my.ini [mysqld]下面加上charact ...
- String, StringBuffer, StringBuilder比较
1.见API: String是不可变的字符序列: StringBuffer是线程安全的,可变的字符序列: StringBuilder是可变的字符序列: StringBuffer与String的区别是S ...
- 【BZOJ 2820】 YY的GCD (莫比乌斯+分块)
YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...
- iOS开发UI篇—UITableviewcell的性能问题
iOS开发UI篇—UITableviewcell的性能问题 一.UITableviewcell的一些介绍 UITableView的每一行都是一个UITableViewCell,通过dataSource ...
- [wikioi]线段覆盖 2
http://wikioi.com/problem/3027/ # 有个小错误调了半天,最终发现sort(line, line+N)错了,后面那个是exclusive的,所以要line+N+1.# 按 ...
- go与rpc
Go语言的RPC介绍(含Protobuf-RPC) http://www.open-open.com/lib/view/open1389251727289.html
- redhat 6.5 使用其它Linux镜像源的yum源
最近在虚拟机里装了rhel_6.5_x86_64,发现竟然不自带g++,没办法只好 “yum install gcc-c++”,无奈失败,原因是redhat的yum是收费的... 于是打算怒装其它免费 ...
- MySQL优化器cost计算
记录MySQL 5.5上,优化器进行cost计算的方法. 第一篇: 单表的cost计算 数据结构: 1. table_share: 包含了表的元数据,其中索引部分: key_info:一个key的结构 ...
- ☀【jQuery插件】DOM 延迟渲染
test.html <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset=&q ...