2243: [SDOI2011]染色

Time Limit: 20 Sec  Memory Limit: 512 MB
Submit: 4637  Solved: 1726
[Submit][Status][Discuss]

Description

给定一棵有n个节点的无根树和m个操作,操作有2类:

1、将节点a到节点b路径上所有点都染成颜色c;

2、询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),如“112221”由3段组成:“11”、“222”和“1”。

请你写一个程序依次完成这m个操作。

Input

第一行包含2个整数n和m,分别表示节点数和操作数;

第二行包含n个正整数表示n个节点的初始颜色

下面行每行包含两个整数x和y,表示xy之间有一条无向边。

下面行每行描述一个操作:

“C a b c”表示这是一个染色操作,把节点a到节点b路径上所有点(包括a和b)都染成颜色c;

“Q a b”表示这是一个询问操作,询问节点a到节点b(包括a和b)路径上的颜色段数量。

Output

对于每个询问操作,输出一行答案。

Sample Input

6 5

2 2 1 2 1 1

1 2

1 3

2 4

2 5

2 6

Q 3 5

C 2 1 1

Q 3 5

C 5 1 2

Q 3 5

Sample Output

3

1

2

HINT

数N<=10^5,操作数M<=10^5,所有的颜色C为整数且在[0, 10^9]之间。

Source

【思路】

树链剖分,线段树

线段树维护lc rc c s分别表示线段的左右端颜色 update设置颜色 线段所含颜色数,需要注意的是线段合并以及统计信息时候需要考虑两线段接点是否重色。

Ps:dep比较的是top,T-T    节点信息加上lr倒是个不错的写法 :)

【代码】

 #include<cstdio>
#include<cstring>
#include<vector>
#include<iostream>
#include<algorithm>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; const int N = 1e5+1e5+; struct Node {
int l,r,lc,rc,c,s;
}T[N<<];
vector<int> G[N];
int n,m,z,c[N];
char s[]; int w[N],top[N],son[N],siz[N],fa[N],dep[N]; void dfs1(int u) {
siz[u]=; son[u]=;
for(int i=;i<G[u].size();i++) {
int v=G[u][i];
if(v!=fa[u]) {
fa[v]=u; dep[v]=dep[u]+;
dfs1(v);
if(siz[v]>siz[son[u]]) son[u]=v;
siz[u]+=siz[v];
}
}
}
void dfs2(int u,int tp) {
w[u]=++z; top[u]=tp;
if(son[u]) dfs2(son[u],tp);
for(int i=;i<G[u].size();i++) {
int v=G[u][i];
if(v!=son[u] && v!=fa[u]) dfs2(v,v);
}
}
void pushdown(int u) {
if(T[u].c!=- && T[u].l<T[u].r) {
int lc=u<< , rc=lc|;
T[lc].c=T[rc].c=T[u].c;
T[lc].lc=T[lc].rc=T[rc].lc=T[rc].rc=T[u].c;
T[lc].s=T[rc].s=;
T[u].c=-;
}
}
void maintain(int u) {
int lc=u<<,rc=lc|;
T[u].lc=T[lc].lc , T[u].rc=T[rc].rc;
T[u].s=T[lc].s+T[rc].s-(T[lc].rc==T[rc].lc);
}
void build(int u,int L,int R) {
T[u].l=L , T[u].r=R , T[u].c=- , T[u].s=;
if(L==R) return ;
int M=(L+R)>>;
build(u<<,L,M) , build(u<<|,M+,R);
}
void update(int u,int L,int R,int x) {
pushdown(u);
if(L==T[u].l && R==T[u].r) { //CC
T[u].c=T[u].lc=T[u].rc=x;
T[u].s=; return ;
}
int M=(T[u].l+T[u].r)>> , lc=u<< , rc=lc|;
if(R<=M) update(lc,L,R,x); //can change
else if(L>M) update(rc,L,R,x);
else
update(lc,L,M,x) , update(rc,M+,R,x);
maintain(u);
}
int query(int u,int L,int R) {
pushdown(u);
if(L==T[u].l && R==T[u].r) return T[u].s;
int M=(T[u].l+T[u].r)>> , lc=u<< , rc=lc|;
if(R<=M) return query(lc,L,R);
else if(L>M) return query(rc,L,R);
else
return query(lc,L,M)+query(rc,M+,R)-(T[lc].rc==T[rc].lc);
}
int find(int u,int r) {
pushdown(u);
if(T[u].l==T[u].r) return T[u].lc;
int M=(T[u].l+T[u].r)>>;
return r<=M? find(u<<,r):find(u<<|,r);
}
void modify(int u,int v,int x) {
while(top[u]!=top[v]) {
if(dep[top[u]]<dep[top[v]]) swap(u,v);
update(,w[top[u]],w[u],x);
u=fa[top[u]];
}
if(dep[u]>dep[v]) swap(u,v);
update(,w[u],w[v],x);
}
int ask(int u,int v) {
int ans=;
while(top[u]!=top[v]) {
if(dep[top[u]]<dep[top[v]]) swap(u,v);
ans+=query(,w[top[u]],w[u]);
if(find(,w[fa[top[u]]])==find(,w[top[u]])) ans--;
u=fa[top[u]];
}
if(dep[u]>dep[v]) swap(u,v);
ans+=query(,w[u],w[v]);
return ans;
} void read(int& x) {
char c=getchar();
while(!isdigit(c)) c=getchar();
x=;
while(isdigit(c))
x=x*+c-'' , c=getchar();
}
int main() {
read(n) , read(m);
FOR(i,,n) read(c[i]);
int u,v,k;
FOR(i,,n-) {
read(u) , read(v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs1() , dfs2(,);
build(,,n);
FOR(i,,n) update(,w[i],w[i],c[i]);
while(m--) {
scanf("%s",s);
read(u) , read(v);
if(s[]=='C')
read(k) , modify(u,v,k);
else
printf("%d\n",ask(u,v));
}
return ;
}

bzoj 2243 [SDOI2011]染色(树链剖分,线段树)的更多相关文章

  1. 2243: [SDOI2011]染色 树链剖分+线段树染色

    给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段), 如“112221”由3段组 ...

  2. bzoj2243[SDOI2011]染色 树链剖分+线段树

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 9012  Solved: 3375[Submit][Status ...

  3. 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树

    [BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...

  4. B20J_2243_[SDOI2011]染色_树链剖分+线段树

    B20J_2243_[SDOI2011]染色_树链剖分+线段树 一下午净调这题了,争取晚上多做几道. 题意: 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成 ...

  5. BZOJ2243 [SDOI2011]染色(树链剖分+线段树合并)

    题目链接 BZOJ2243 树链剖分 $+$ 线段树 线段树每个节点维护$lc$, $rc$, $s$ $lc$代表该区间的最左端的颜色,$rc$代表该区间的最右端的颜色 $s$代表该区间的所有连续颜 ...

  6. BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )

    BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...

  7. BZOJ.1036 [ZJOI2008]树的统计Count ( 点权树链剖分 线段树维护和与最值)

    BZOJ.1036 [ZJOI2008]树的统计Count (树链剖分 线段树维护和与最值) 题意分析 (题目图片来自于 这里) 第一道树链剖分的题目,谈一下自己的理解. 树链剖分能解决的问题是,题目 ...

  8. BZOJ 3672[NOI2014]购票(树链剖分+线段树维护凸包+斜率优化) + BZOJ 2402 陶陶的难题II (树链剖分+线段树维护凸包+分数规划+斜率优化)

    前言 刚开始看着两道题感觉头皮发麻,后来看看题解,发现挺好理解,只是代码有点长. BZOJ 3672[NOI2014]购票 中文题面,题意略: BZOJ 3672[NOI2014]购票 设f(i)f( ...

  9. bzoj 4196 [Noi2015]软件包管理器 (树链剖分+线段树)

    4196: [Noi2015]软件包管理器 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2852  Solved: 1668[Submit][Sta ...

  10. bzoj 2157: 旅游【树链剖分+线段树】

    裸的树链剖分+线段树 但是要注意一个地方--我WA了好几次才发现取完相反数之后max值和min值是要交换的-- #include<iostream> #include<cstdio& ...

随机推荐

  1. Codevs 1507 酒厂选址

    1507 酒厂选址 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 传送门 题目描述 Description Abstinence(戒酒)岛的居民们酷爱一种无酒精啤酒 ...

  2. UDP协议疑难杂症全景解析

    转载:http://blog.csdn.net/dog250/article/details/6896949 UDP协议疑难杂症全景解析 2011-10-22 19:26 2989人阅读 评论(4)  ...

  3. 24种设计模式--观察者模式【Observer Pattern】

     <孙子兵法>有云: “知彼知己,百战不殆:不知彼而知己,一胜一负:不知彼,不知己,每战必殆”,那怎么才能知己知彼呢?知己是很容易的,自己的军队嘛,很容易知道,那怎么知彼呢?安插间谍是很好 ...

  4. struts2请求过程源码分析(转)

    Struts2是Struts社区和WebWork社区的共同成果,我们甚至 可以说,Struts2是WebWork的升级版,他采用的正是WebWork的核心,所以,Struts2并不是一个不成熟的产品, ...

  5. 响应式页面字体用什么单位:rem

    html:62.5%//10pxbody:1.4rem;//14px... <!doctype html> <html> <head> <title>a ...

  6. eclipse中DDMS的LOGcat只有一列level

    拷贝来源:http://www.cnblogs.com/kobe8/p/4620785.html http://stackoverflow.com/questions/25010393/eclipse ...

  7. CentOS下Redis 2.2.14安装配置详解(转载)

    一. 下载redis最新版本2.2.14 cd /usr/local/src wget –c http://redis.googlecode.com/files/redis-2.2.14.tar.gz ...

  8. CPU/寄存器/内存

    因为要了解多线程,自然少不了一些硬件知识的科普,我没有系统学习过硬件知识,仅仅是从书上以及网络上看来的,如果有错误请指出来. CPU,全名Central Processing Unit(中央处理器). ...

  9. 2014年度辛星html教程夏季版第二节

    上面一节中我们介绍了HTML文件的书写和几个标签,接下来我们来认识几个其他的标签,这里我们主要介绍一下head标签和文本标签. ***************head标签*************** ...

  10. Swift lazy 修饰符和方法

    LAZY 修饰符和 LAZY 方法 由 王巍 (@ONEVCAT) 发布于 2015/10/07 延时加载或者说延时初始化是很常用的优化方法,在构建和生成新的对象的时候,内存分配会在运行时耗费不少时间 ...