同一时刻有N位车主带着他们的爱车来到了汽车维修中心。维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的。现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最小。

  说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。

输入

  第一行有两个数M,N,表示技术人员数与顾客数。

  接下来n行,每行m个整数。第i+1行第j个数表示第j位技术人员维修第i辆车需要用的时间T。

输出

  最小平均等待时间,答案精确到小数点后2位。

样例

repair.in

2 2

3 2

1 4

repair.out

1.50

数据范围: (2<=M<=9,1<=N<=60), (1<=T<=1000)

  网上的题解好多都特别粗略,我走了好多弯路。

  所以决定写详细一点:把每个修理工变为N个点,表示倒数第1~N个修理的车,为啥是倒数呢?因为不知道一个人究竟修了几辆车,又因为倒数第一的总比倒数第二的更优,费用流会优先倒数第一的,再倒数第二的,所以用倒数的可以很好地解决。多么的巧妙!!!然后是这样建图的:S向每个人的每个倒数第几维修的点连一条流量为1,费用为0的边;接着再新建N个点,代表N辆车,每个人的每个倒数第几维修的点向其连一条流量为1,费用为(当前是倒数第i个的i)*(第j个人修第k辆车的时间);最后由N辆车的向T连容量为1,费用为0的边。

 #include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
const int INF=;
const int maxn=,maxm=;
int cnt=,fir[maxn],nxt[maxm],to[maxm];
int cap[maxm],val[maxm],dis[maxn],path[maxn]; void add(int a,int b,int c,int v){
nxt[++cnt]=fir[a];to[cnt]=b;
cap[cnt]=c;val[cnt]=v;fir[a]=cnt;
}
void addedge(int a,int b,int c,int v){
add(a,b,c,v);
add(b,a,,-v);
} int S,T;
int vis[maxn];
int Spfa(){
deque<int>q;
memset(dis,,sizeof(dis));
memset(vis,,sizeof(vis));
q.push_front(S);
dis[S]=;vis[S]=;
while(!q.empty()){
int x=q.front();q.pop_front();vis[x]=;
for(int i=fir[x];i;i=nxt[i])
if(cap[i]&&dis[x]+val[i]<dis[to[i]]){
dis[to[i]]=val[i]+dis[x];
path[to[i]]=i;
if(vis[to[i]])continue;
if(dis[to[i]]<dis[x])
q.push_front(to[i]);
else
q.push_back(to[i]);
vis[to[i]]=;
}
}
return dis[T]==dis[T+]?:dis[T];
} int Aug(){
int p=T,f=INF;
while(p!=S){
f=min(f,cap[path[p]]);
p=to[path[p]^];
}
p=T;
while(p!=S){
cap[path[p]]-=f;
cap[path[p]^]+=f;
p=to[path[p]^];
}
return f;
} int MCMF(){
int ret=,d;
while(d=Spfa())
ret+=Aug()*d;
return ret;
} int n,m;
int a[maxn][maxn];
int main(){
freopen("scoi2007_repair.in","r",stdin);
freopen("scoi2007_repair.out","w",stdout);
scanf("%d%d",&m,&n);
S=;T=n*m+n+;
for(int i=;i<=n;i++){
addedge(n*m+i,T,,);
for(int j=;j<=m;j++)
addedge(S,(i-)*m+j,,);
}
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%d",&a[i][j]); for(int j=;j<=m;j++)
for(int i=;i<=n;i++)
for(int k=;k<=n;k++)
addedge((i-)*m+j,n*m+k,,i*a[k][j]); printf("%.2f\n",1.0*MCMF()/n);
return ;
}

图论(网络流):SCOI 2007 修车的更多相关文章

  1. [SCOI 2007] 修车

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1070 [算法] 首先 , 我们发现 , 在倒数第i个修车会对答案产生i * k的贡献 ...

  2. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  3. 【uva 11082】Matrix Decompressing(图论--网络流最大流 Dinic+拆点二分图匹配)

    题意:有一个N行M列的正整数矩阵,输入N个前1~N行所有元素之和,以及M个前1~M列所有元素之和.要求找一个满足这些条件,并且矩阵中的元素都是1~20之间的正整数的矩阵.输入保证有解,而且1≤N,M≤ ...

  4. 【BZOJ 1069】【SCOI 2007】最大土地面积 凸包+旋转卡壳

    因为凸壳上对踵点的单调性所以旋转卡壳线性绕一圈就可以啦啦啦--- 先求凸包,然后旋转卡壳记录$sum1$和$sum2$,最后统计答案就可以了 #include<cmath> #includ ...

  5. 图论(网络流):COGS 410. [NOI2009] 植物大战僵尸

    410. [NOI2009] 植物大战僵尸 ★★★   输入文件:pvz.in   输出文件:pvz.out   简单对比时间限制:2 s   内存限制:512 MB [问题描述] Plants vs ...

  6. 解题:SCOI 2007 蜥蜴

    题面 拆点跑最大流 所有能跑出去的点连向汇点,容量为inf 原点连向所有初始有蜥蜴的点,容量为1 每根柱子拆成两个点“入口”和“出口”,入口向出口连容量为高度的边,出口向别的有高度的柱子的入口连容量为 ...

  7. 【SCOI 2007】 降雨量

    [题目链接] 点击打开链接 [算法] 线段树 此题细节很多,写程序时要细心! [代码] #include<bits/stdc++.h> using namespace std; #defi ...

  8. [ SCOI 2007 ] Perm

    \(\\\) \(Description\) 给出只包括多个\(0\text~ 9\)的数字集,求有多少个本质不同的全排列,使得组成的数字能够整除\(M\). \(|S|\in [1,10]\),\( ...

  9. [SCOI 2007] 排列

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1072 [算法] 状压DP [代码] #include<bits/stdc++. ...

随机推荐

  1. Struts.properties(转)

    原文地址:http://blog.csdn.net/wfcaven/article/details/5937567 Struts2提供了很多可配置的属性,通过这些属性的设置,可以改变框架的行为,从而满 ...

  2. Weex 样式

    1.盒型 width height padding padding-left padding-right padding-top padding-bottom margin margin-left m ...

  3. struts_ognl详解

  4. ASP.net MVC 多语言处理

    MVC多语言处理主要分两部分,一部分是Razor视图中的文字标签内容切换, 另一部分是javascript文件中的文标签内容切换.  这里分这两部分来说. View视图中的比较好做, 思路是使用资源文 ...

  5. wsdlLocation可以写成项目的相对路劲吗

    如果客户端的代码使用wsdl生成的话,这个地址是从wsdl描述的<service>里的<location>获取的,如果开发过程中服务地址换了,那只能手工来修改了,好像只有一个地 ...

  6. iOS7初体验(1)——第一个应用程序HelloWorld

    iOS7 Beta已经发布了,迫不及待地下载了iOS 7及Xcode 5并体验了一下.先做一个简单的Hello World看看都有哪些变化吧. 1. 启动Xcode5-DP: 2. 从菜单选择File ...

  7. hdoj 2601(判断N=i*j+i+j)

    Problem E Time Limit : 6000/3000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Sub ...

  8. SGU 195. New Year Bonus Grant

    时间限制:0.75s 空间限制:4M 题意: 在一颗树(最多500000个节点)中,可以对节点染色,但是一个节点染了色后,它的父节点和兄弟节点都不能再染了,求最大的染色节点数,并输出所有染色节点. S ...

  9. BeanUtils的日期问题

    //注册日期类型转换器 //第一种  自定义方法            ConvertUtils.register(new Converter(){                //第一个参数是目标 ...

  10. Javascript闭包函数快速上手

    闭包函数是什么?在开始学习的闭包的时候,大家很能都比较难理解.就从他的官方解释来说,都是比较概念化的. 不过我们也还是从闭包的含义出发. 闭包是指函数有自由独立的变量.换句话说,定义在闭包中的函数可以 ...