《University Calculus》-chape10-向量与空间几何学-向量夹角
点积、向量夹角:
无论对于空间向量还是平面向量,我们所熟知的是:给出任意两个向量,我们都能够根据公式计算它们的夹角,但是这个夹角必须是将两个向量的起点重合后所夹成的小于等于π的角,可是,这是为什么呢?
它其实来源于如下的定理(这里的定理和证明过程以三维向量为例,对于二维向量,可做完全一致的推导):
证明:
考虑在如下的一个三角形中。
通过这个定理的证明过程就能够理解:为什么我们求向量夹角用点积;两个向量之间的点积为什么等于两个向量模长再乘以夹角的余弦值;为什么我们求出来的角是起点重合的两个向量夹出小于π的角(因为我们基于一个三角形,两向量起点重合是的向量w能够按照上文中给出的形式计算)。
《University Calculus》-chape10-向量与空间几何学-向量夹角的更多相关文章
- 《University Calculus》-chape10-向量和空间几何学-叉积
叉积概念的引入: 在平面中我们为了度量一条直线的倾斜状态,为引入倾斜角这个概念.而通过在直角坐标系中建立tan α = k,我们实现了将几何关系和代数关系的衔接,这其实也是用计算机解决几何问题的一个核 ...
- 《University Calculus》-chape8-无穷序列和无穷级数-欧拉恒等式
写在前面:写在前面的当然是对大天朝教材的吐槽啦. 曾记否,高中所学虚数和复平面的概念,如此虚无的概念到了大学一门叫<模拟电子技术>的课程中居然明目张胆的开始进行计算! 曾记否,高中的指对运 ...
- 《University Calculus》-chape6-定积分的应用-求体积
定积分一个广泛的应用就是在求解一些“看似不规则”的几何体的体积,之所以说看似不规则,是因为不规则之下还是有一定的“规则性”可言的,我们就是需要抓住这些线索进行积分运算得到体积. 方法1:切片法. 这里 ...
- 《University Calculus》-chape12-偏导数-基本概念
偏导数本质上就是一元微分学向多元函数的推广. 关于定义域的开域.闭域的推广: 其实这个定义本质上讲的就是xoy面上阴影区域的最外面的一周,只不过这里用了更加规范的数学语言. 二次函数的图形.层曲线(等 ...
- 《University Calculus》-chaper13-多重积分-三重积分的引入
承接之前对一重积分和二重积分的介绍,这里我们自然的引出三重积分. 在二重积分的引入中,我们曾经埋下过一个小伏笔,二重积分的几何意义是求解一个体积,但是我们仅仅限定在了曲顶柱体的几何体,那么对于完全由曲 ...
- 《University Calculus》-chaper13-多重积分-二重积分的引入
这一章节我们开始对多重积分的研究. 在此之前,我们首先来回忆起积分的过程,在平面中,面临求解不规则图形的面积(常叫曲边梯形)的时候,我们可以采取建立直角坐标系,然后通过得到不规则图形边界的函数表达式f ...
- 《University Calculus》-chape4-极坐标与圆锥曲线-极坐标系下的面积与弧长
极坐标系下的面积: 在直角坐标系下一样,这里在极坐标系下,我们面临一个同样的问题:如何求解一个曲线围成的面积?虽然两种情况本质上是一样的,但是还是存在一些细小的区别. 在直角坐标系下中,我们是讨论一条 ...
- 《University Calculus》-chape8-无穷序列和无穷级数-基本极限恒等式
基于基本的极限分析方法(诸多的无穷小以及洛必达法则),我们能够得到推导出一些表面上看不是那么显然的式子,这些极限恒等式往往会在其他的推导过程中用到,其中一个例子就是概率论中的极限定理那部分知识.
- 《University Calculus》-chape3-微分法-基本概念、定理
所谓微分法其实就是我们所熟悉的导数,它是一种无限分割的方法,同积分法一样,它们是处理曲线和曲面的有利工具,也是一门很伟大的自然语言.微分方程就是一种名副其实的描述自然的语言. 同样这里如果取单侧导数, ...
随机推荐
- SQL学习:查询的用法(1)
在SQL servre的使用中,查询的用法是最多的.最重要的,也是最难学习的,因此掌握查询的用法很重要. 先将表的示例上图 员工表: 部门表: ...
- jquery 关于event.target使用的几点说明介绍
event.target说明:引发事件的DOM元素. this和event.target的区别js中事件是会冒泡的,所以this是可以变化的,但event.target不会变化,它永远是直接接受事件的 ...
- Angularjs总结(五)指令运用及常用控件的赋值操作
1.常用指令 <div ng-controller="jsyd-controller"> <div style="float:left;width:10 ...
- 实例分析jdom和dom4j的使用和区别
对于xml的解析和生成,我们在实际应用中用的比较多的是JDOM和DOM4J,下面通过例子来分析两者的区别(在这里我就不详细讲解怎么具体解析xml,如果对于xml的解析看不懂的可以先去看下我之前关于do ...
- javascript 中的数据驱动页面模式
前段时间一直在想前端MVC的意义.这个话题仁者见仁,但是MVC的使用方法给我提了一个管理数据的有意思的想法--数据管理和数据驱动页面.我们以前的思路一直是事件驱动页面,事件驱动页面合乎逻辑而且节约代码 ...
- WPF AutoGeneratingColumn 绑定下拉框
WPF自动产生列,前台代码: <DataGrid x:Name="Dg" AutoGenerateColumns="True" CanUserAddRow ...
- include()、include_once()与require()、require_once()的异同点
相同点: 首先include().include_once()与require().require_once()都是用来包含并运行指定文件的,并且包含的文件在执行时在结构上是完全一样的. 例如:inc ...
- 轻松使用px为单位开发移动端页面
研究移动端页面已经有许久了,一直执着于rem来开发,不谈性能怎么样,单从工作效率上看影响了不少,首先要固定设计稿的宽度,一般都是固定在640px,然后在根据根目录的字体大小来计算出每个元素的rem的值 ...
- iOS: 学习笔记, 用代码驱动自动布局实例(swift)
iOS自动布局是设置iOS界面的利器.本实例展示了如何使用自动布局语言设置水平布局, 垂直布局1. 创建空白iOS项目(swift)2. 添加一个控制器类, 修改YYAppDelegate.swift ...
- Scroll view 备忘
Stroyboard中使用ScrollView 当我们使用Storyboard开发项目时,如果要往控制器上拖入一个ScrollView并且添加约束设置滚动区域,是有特殊的规定的: 拖入一个scroll ...