点积、向量夹角:

无论对于空间向量还是平面向量,我们所熟知的是:给出任意两个向量,我们都能够根据公式计算它们的夹角,但是这个夹角必须是将两个向量的起点重合后所夹成的小于等于π的角,可是,这是为什么呢?

它其实来源于如下的定理(这里的定理和证明过程以三维向量为例,对于二维向量,可做完全一致的推导):

证明:

考虑在如下的一个三角形中。

通过这个定理的证明过程就能够理解:为什么我们求向量夹角用点积;两个向量之间的点积为什么等于两个向量模长再乘以夹角的余弦值;为什么我们求出来的角是起点重合的两个向量夹出小于π的角(因为我们基于一个三角形,两向量起点重合是的向量w能够按照上文中给出的形式计算)。

《University Calculus》-chape10-向量与空间几何学-向量夹角的更多相关文章

  1. 《University Calculus》-chape10-向量和空间几何学-叉积

    叉积概念的引入: 在平面中我们为了度量一条直线的倾斜状态,为引入倾斜角这个概念.而通过在直角坐标系中建立tan α = k,我们实现了将几何关系和代数关系的衔接,这其实也是用计算机解决几何问题的一个核 ...

  2. 《University Calculus》-chape8-无穷序列和无穷级数-欧拉恒等式

    写在前面:写在前面的当然是对大天朝教材的吐槽啦. 曾记否,高中所学虚数和复平面的概念,如此虚无的概念到了大学一门叫<模拟电子技术>的课程中居然明目张胆的开始进行计算! 曾记否,高中的指对运 ...

  3. 《University Calculus》-chape6-定积分的应用-求体积

    定积分一个广泛的应用就是在求解一些“看似不规则”的几何体的体积,之所以说看似不规则,是因为不规则之下还是有一定的“规则性”可言的,我们就是需要抓住这些线索进行积分运算得到体积. 方法1:切片法. 这里 ...

  4. 《University Calculus》-chape12-偏导数-基本概念

    偏导数本质上就是一元微分学向多元函数的推广. 关于定义域的开域.闭域的推广: 其实这个定义本质上讲的就是xoy面上阴影区域的最外面的一周,只不过这里用了更加规范的数学语言. 二次函数的图形.层曲线(等 ...

  5. 《University Calculus》-chaper13-多重积分-三重积分的引入

    承接之前对一重积分和二重积分的介绍,这里我们自然的引出三重积分. 在二重积分的引入中,我们曾经埋下过一个小伏笔,二重积分的几何意义是求解一个体积,但是我们仅仅限定在了曲顶柱体的几何体,那么对于完全由曲 ...

  6. 《University Calculus》-chaper13-多重积分-二重积分的引入

    这一章节我们开始对多重积分的研究. 在此之前,我们首先来回忆起积分的过程,在平面中,面临求解不规则图形的面积(常叫曲边梯形)的时候,我们可以采取建立直角坐标系,然后通过得到不规则图形边界的函数表达式f ...

  7. 《University Calculus》-chape4-极坐标与圆锥曲线-极坐标系下的面积与弧长

    极坐标系下的面积: 在直角坐标系下一样,这里在极坐标系下,我们面临一个同样的问题:如何求解一个曲线围成的面积?虽然两种情况本质上是一样的,但是还是存在一些细小的区别. 在直角坐标系下中,我们是讨论一条 ...

  8. 《University Calculus》-chape8-无穷序列和无穷级数-基本极限恒等式

    基于基本的极限分析方法(诸多的无穷小以及洛必达法则),我们能够得到推导出一些表面上看不是那么显然的式子,这些极限恒等式往往会在其他的推导过程中用到,其中一个例子就是概率论中的极限定理那部分知识.

  9. 《University Calculus》-chape3-微分法-基本概念、定理

    所谓微分法其实就是我们所熟悉的导数,它是一种无限分割的方法,同积分法一样,它们是处理曲线和曲面的有利工具,也是一门很伟大的自然语言.微分方程就是一种名副其实的描述自然的语言. 同样这里如果取单侧导数, ...

随机推荐

  1. strace跟踪操作的详细内容

  2. 2014-11-26----css的简介

    CSS :层叠样式表 cascading style sheets 它的作用是:美化html网页 格式:样式名:值:样式名:值:样式名:值: 注释语法:/* 注释内容 */ 选中代码按TAB,代码左移 ...

  3. CSS 列表

    CSS列表属性作用如下: 设置不同的列表项标记为有序列表 设置不同的列表项标记为无序列表 设置列表项标记为图像 列表 在HTML中,有两种类型的列表: 无序列表 - 列表项标记用特殊图形(如小黑点.小 ...

  4. java封装和多态

    封装.集成.多态和抽象是java的基本特征. 封装的第一步就是对类进行组装,即定义一个类,这时候要考虑这个类要有哪些属性.方法等.第二步就是信息的隐藏,这包括访问修饰符.get/set方法和某些特定方 ...

  5. [Introduction to programming in Java 笔记] 1.3.8 Gambler's ruin simulation 赌徒破产模拟

    赌徒赢得机会有多大? public class Gambler { public static void main(String[] args) { // Run T experiments that ...

  6. Listview控件实现已选择效果

    Winform中用Listview控件实现更新点击选择后已选择效果,如图: 代码如下: private void frmSelect_Load(object sender, EventArgs e) ...

  7. wamp安装注意点!

    安装wamp前或者重装系统后,默认没有依赖的组件VC11,需要先安装才能运行 下载地址:http://www.microsoft.com/en-us/download/details.aspx?id= ...

  8. Php会员权限

    <?phpecho $uu=@array_sum(@$_POST['gr']);?><form action="" method="POST" ...

  9. 简单学C——第五天

    结构体 首先明确,结构体是一种构造的数据类型,是一种由多个数据类型如 int,char,double,数组或者结构体......组成的类型,现在告诉大家如何定义一个结构体.在定义int整型变量时,大家 ...

  10. jq实现瀑布流效果

    <!doctype html><html><head><meta http-equiv="Content-Type" content=&q ...