Apriori算法实例----Weka,R, Using Weka in my javacode
学习数据挖掘工具中,下面使用4种工具来对同一个数据集进行研究。
数据描述:下面这些数据是15个同学选修课程情况,在课程大纲中共有10门课程供学生选择,下面给出具体的选课情况,以ARFF数据文件保存,名称为TestStudenti.arff。我使用Apriori算法期望挖掘出学生选课的关联规则。
@relation test_studenti
@attribute Arbori_binari_de_cautare {TRUE, FALSE}
@attribute Arbori_optimali {TRUE, FALSE}
@attribute Arbori_echilibrati_in_inaltime {TRUE, FALSE}
@attribute Arbori_Splay {TRUE, FALSE}
@attribute Arbori_rosu_negru {TRUE, FALSE}
@attribute Arbori_2_3 {TRUE, FALSE}
@attribute Arbori_B {TRUE, FALSE}
@attribute Arbori_TRIE {TRUE, FALSE}
@attribute Sortare_topologica {TRUE, FALSE}
@attribute Algoritmul_Dijkstra {TRUE, FALSE}
@data
TRUE,TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,TRUE,FALSE,FALSE
TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,FALSE,TRUE,FALSE,FALSE
FALSE,TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,TRUE,FALSE,TRUE
FALSE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE
TRUE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE
TRUE,FALSE,TRUE,FALSE,FALSE,TRUE,TRUE,TRUE,FALSE,FALSE
FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE
TRUE,FALSE,TRUE,TRUE,TRUE,FALSE,TRUE,TRUE,TRUE,FALSE
FALSE,TRUE,TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,FALSE
TRUE,FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,FALSE,TRUE
FALSE,FALSE,TRUE,FALSE,TRUE,FALSE,FALSE,TRUE,TRUE,TRUE
TRUE,FALSE,FALSE,TRUE,TRUE,TRUE,FALSE,TRUE,FALSE,TRUE
FALSE,TRUE,TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,FALSE,TRUE
TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,FALSE,FALSE
TRUE,TRUE,FALSE,FALSE,TRUE,TRUE,FALSE,TRUE,FALSE,FALSE
(一) Weka 使用实例
在Apriori算法中,设置minSupprot=50%, 最小置信度 minimum confidence 也设置为50%。Weka配置路径为 Explore-》Openfile(TestStudenti.arff)->Associate 点击配置参数信息
在算法完成之后,我们得到以下结果:
Best rules found:
1. Sortare_topologica=FALSE 13 ==> Arbori_TRIE=TRUE 13 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
2. Arbori_rosu_negru=TRUE 11 ==> Arbori_TRIE=TRUE 11 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
3. Arbori_optimali=TRUE 10 ==> Arbori_TRIE=TRUE 10 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
4. Arbori_optimali=TRUE 10 ==> Sortare_topologica=FALSE 10 <conf:(1)> lift:(1.15) lev:(0.09) [1] conv:(1.33)
5. Arbori_echilibrati_in_inaltime=TRUE 10 ==> Arbori_TRIE=TRUE 10 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
6. Arbori_optimali=TRUE Sortare_topologica=FALSE 10 ==> Arbori_TRIE=TRUE 10 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
7. Arbori_optimali=TRUE Arbori_TRIE=TRUE 10 ==> Sortare_topologica=FALSE 10 <conf:(1)> lift:(1.15) lev:(0.09) [1] conv:(1.33)
8. Arbori_optimali=TRUE 10 ==> Arbori_TRIE=TRUE Sortare_topologica=FALSE 10 <conf:(1)> lift:(1.15) lev:(0.09) [1] conv:(1.33)
9. Arbori_binari_de_cautare=TRUE 9 ==> Arbori_TRIE=TRUE 9 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
10. Arbori_B=FALSE 9 ==> Arbori_TRIE=TRUE 9 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
11. Arbori_rosu_negru=TRUE Sortare_topologica=FALSE 9 ==> Arbori_TRIE=TRUE 9 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
12. Arbori_TRIE=TRUE 15 ==> Sortare_topologica=FALSE 13 <conf:(0.87)> lift:(1) lev:(0) [0] conv:(0.67)
13. Arbori_rosu_negru=TRUE 11 ==> Sortare_topologica=FALSE 9 <conf:(0.82)> lift:(0.94) lev:(-0.04) [0] conv:(0.49)
14. Arbori_rosu_negru=TRUE Arbori_TRIE=TRUE 11 ==> Sortare_topologica=FALSE 9 <conf:(0.82)> lift:(0.94) lev:(-0.04) [0] conv:(0.49)
15. Arbori_rosu_negru=TRUE 11 ==> Arbori_TRIE=TRUE Sortare_topologica=FALSE 9 <conf:(0.82)> lift:(0.94) lev:(-0.04) [0] conv:(0.49)
16. Sortare_topologica=FALSE 13 ==> Arbori_optimali=TRUE 10 <conf:(0.77)> lift:(1.15) lev:(0.09) [1] conv:(1.08)
17. Arbori_TRIE=TRUE Sortare_topologica=FALSE 13 ==> Arbori_optimali=TRUE 10 <conf:(0.77)> lift:(1.15) lev:(0.09) [1] conv:(1.08)
18. Sortare_topologica=FALSE 13 ==> Arbori_optimali=TRUE Arbori_TRIE=TRUE 10 <conf:(0.77)> lift:(1.15) lev:(0.09) [1] conv:(1.08)
19. Arbori_TRIE=TRUE 15 ==> Arbori_rosu_negru=TRUE 11 <conf:(0.73)> lift:(1) lev:(0) [0] conv:(0.8)
20. Sortare_topologica=FALSE 13 ==> Arbori_rosu_negru=TRUE 9 <conf:(0.69)> lift:(0.94) lev:(-0.04) [0] conv:(0.69)
分析第一条结果,我们可以得出关联规则: 如果一个学生不参加Sortare topologica 课程,那么他的一个趋向是肯定不会参加 Arbori TRIE课程。这条关联规则的置信度是100%,是非常可信的。
(二) Using Weka in my Javacode
展示Java代码,运行程序可以得到和上面一样的结果
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import weka.associations.Apriori;
import weka.core.Instances;
public class Main{
public static void main(String[] args) {
Instances data = null;
try {
BufferedReader reader = new BufferedReader( new FileReader( "TestStudenti.arff" ) );
data = new Instances(reader);
reader.close();
data.setClassIndex(data.numAttributes() - 1);
}
catch ( IOException e ) {
e.printStackTrace();
}
double deltaValue = 0.05;
double lowerBoundMinSupportValue = 0.1;
double minMetricValue = 0.5;
int numRulesValue = 20;
double upperBoundMinSupportValue = 1.0;
String resultapriori;
Apriori apriori = new Apriori();
apriori.setDelta(deltaValue);
apriori.setLowerBoundMinSupport(lowerBoundMinSupportValue);
apriori.setNumRules(numRulesValue);
apriori.setUpperBoundMinSupport(upperBoundMinSupportValue);
apriori.setMinMetric(minMetricValue);
try{
apriori.buildAssociations( data );
}
catch ( Exception e ) {
e.printStackTrace();
}
resultapriori = apriori.toString();
System.out.println(resultapriori);
}
}
(三) Using Weka in R
程序很简单,仅仅三行代码搞定。
library(RWeka);
data <- read.arff("D:/test.studenti.arff");
Apriori(data,control=Weka_control(N=20,T =0,C =0.5,D =0.05, U= 1.0,M =0.5, S =-1.0, c =-1))
运行结果:
Apriori
=======
Minimum support: 0.6 (9 instances)
Minimum metric <confidence>: 0.5
Number of cycles performed: 8
Generated sets of large itemsets:
Size of set of large itemsets L(1): 7
Size of set of large itemsets L(2): 8
Size of set of large itemsets L(3): 2
Best rules found:
1. Sortare_topologica=FALSE 13 ==> Arbori_TRIE=TRUE 13 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
2. Arbori_rosu_negru=TRUE 11 ==> Arbori_TRIE=TRUE 11 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
3. Arbori_optimali=TRUE 10 ==> Arbori_TRIE=TRUE 10 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
4. Arbori_optimali=TRUE 10 ==> Sortare_topologica=FALSE 10 <conf:(1)> lift:(1.15) lev:(0.09) [1] conv:(1.33)
5. Arbori_echilibrati_in_inaltime=TRUE 10 ==> Arbori_TRIE=TRUE 10 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
6. Arbori_optimali=TRUE Sortare_topologica=FALSE 10 ==> Arbori_TRIE=TRUE 10 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
7. Arbori_optimali=TRUE Arbori_TRIE=TRUE 10 ==> Sortare_topologica=FALSE 10 <conf:(1)> lift:(1.15) lev:(0.09) [1] conv:(1.33)
8. Arbori_optimali=TRUE 10 ==> Arbori_TRIE=TRUE Sortare_topologica=FALSE 10 <conf:(1)> lift:(1.15) lev:(0.09) [1] conv:(1.33)
9. Arbori_binari_de_cautare=TRUE 9 ==> Arbori_TRIE=TRUE 9 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
10. Arbori_B=FALSE 9 ==> Arbori_TRIE=TRUE 9 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
11. Arbori_rosu_negru=TRUE Sortare_topologica=FALSE 9 ==> Arbori_TRIE=TRUE 9 <conf:(1)> lift:(1) lev:(0) [0] conv:(0)
12. Arbori_TRIE=TRUE 15 ==> Sortare_topologica=FALSE 13 <conf:(0.87)> lift:(1) lev:(0) [0] conv:(0.67)
13. Arbori_rosu_negru=TRUE 11 ==> Sortare_topologica=FALSE 9 <conf:(0.82)> lift:(0.94) lev:(-0.04) [0] conv:(0.49)
14. Arbori_rosu_negru=TRUE Arbori_TRIE=TRUE 11 ==> Sortare_topologica=FALSE 9 <conf:(0.82)> lift:(0.94) lev:(-0.04) [0] conv:(0.49)
15. Arbori_rosu_negru=TRUE 11 ==> Arbori_TRIE=TRUE Sortare_topologica=FALSE 9 <conf:(0.82)> lift:(0.94) lev:(-0.04) [0] conv:(0.49)
16. Sortare_topologica=FALSE 13 ==> Arbori_optimali=TRUE 10 <conf:(0.77)> lift:(1.15) lev:(0.09) [1] conv:(1.08)
17. Arbori_TRIE=TRUE Sortare_topologica=FALSE 13 ==> Arbori_optimali=TRUE 10 <conf:(0.77)> lift:(1.15) lev:(0.09) [1] conv:(1.08)
18. Sortare_topologica=FALSE 13 ==> Arbori_optimali=TRUE Arbori_TRIE=TRUE 10 <conf:(0.77)> lift:(1.15) lev:(0.09) [1] conv:(1.08)
19. Arbori_TRIE=TRUE 15 ==> Arbori_rosu_negru=TRUE 11 <conf:(0.73)> lift:(1) lev:(0) [0] conv:(0.8)
20. Sortare_topologica=FALSE 13 ==> Arbori_rosu_negru=TRUE 9 <conf:(0.69)> lift:(0.94) lev:(-0.04) [0] conv:(0.69)
Apriori算法实例----Weka,R, Using Weka in my javacode的更多相关文章
- Apriori算法实例
Apriori算法与实例 R. Agrawal 和 R. Srikant于1994年在文献[2]中提出了Apriori算法,该算法的描述如下: 下面是一个具体的例子,最开始数据库里有4条交易,{A.C ...
- Apriori算法例子
1 Apriori介绍 Apriori算法使用频繁项集的先验知识,使用一种称作逐层搜索的迭代方法,k项集用于探索(k+1)项集.首先,通过扫描事务(交易)记录,找出所有的频繁1项集,该集合记做L1,然 ...
- Apriori算法第二篇----详细分析和代码实现
1 Apriori介绍 Apriori算法使用频繁项集的先验知识,使用一种称作逐层搜索的迭代方法,k项集用于探索(k+1)项集.首先,通过扫描事务(交易)记录,找出所有的频繁1项集,该集合记做L1,然 ...
- HAWQ + MADlib 玩转数据挖掘之(七)——关联规则方法之Apriori算法
一.关联规则简介 关联规则挖掘的目标是发现数据项集之间的关联关系,是数据挖据中一个重要的课题.关联规则最初是针对购物篮分析(Market Basket Analysis)问题提出的.假设超市经理想更多 ...
- 数据挖掘:关联规则的apriori算法在weka的源码分析
相对于机器学习,关联规则的apriori算法更偏向于数据挖掘. 1) 测试文档中调用weka的关联规则apriori算法,如下 try { File file = new File("F:\ ...
- 玩转大数据:深入浅出大数据挖掘技术(Apriori算法、Tanagra工具、决策树)
一.本课程是怎么样的一门课程(全面介绍) 1.1.课程的背景 “大数据”作为时下最火热的IT行业的词汇,随之而来的数据仓库.数据分析.数据挖掘等等围绕大数据的商业价值的利用逐渐成为 ...
- #研发解决方案#基于Apriori算法的Nginx+Lua+ELK异常流量拦截方案
郑昀 基于杨海波的设计文档 创建于2015/8/13 最后更新于2015/8/25 关键词:异常流量.rate limiting.Nginx.Apriori.频繁项集.先验算法.Lua.ELK 本文档 ...
- 频繁模式挖掘apriori算法介绍及Java实现
频繁模式是频繁地出如今数据集中的模式(如项集.子序列或者子结构).比如.频繁地同一时候出如今交易数据集中的商品(如牛奶和面包)的集合是频繁项集. 一些基本概念 支持度:support(A=>B) ...
- Apriori算法实现
Apriori算法原理:http://blog.csdn.net/kingzone_2008/article/details/8183768 import java.util.HashMap; imp ...
随机推荐
- win7环境下配置Java环境
==下载Java SE Development Kit 8u45== http://www.oracle.com/technetwork/java/javase/downloads/jdk8-down ...
- CGAL Manual/tutorial_hello_world.html
Hello World Author CGAL Editorial Board 本教程是为知道C++和几何算法的基本知识的CGAL新手准备的.第一节展示了如何特化点和段CGAL类,以及如何应用几何谓词 ...
- 转:jQuery.fn.extend与jQuery.extend到底区别在哪?
还是先吐个槽,网上都都是转载抄袭,基本上就那么一两篇文章,说的还不清楚.... 正文: 其实说白了,从两个方法本身就能看出来端倪. 我们先把jQuery看成了一个类,这样好理解一些. jQuery.e ...
- Xilium.CefGlue利用XHR实现Js调用c#方法
防外链 博客园原文地址在这里http://www.cnblogs.com/shen6041/p/3442499.html 引 Xilium CefGlue是个不错的cef扩展工程,托管地址在这里 ht ...
- 数组有N+M个数字, 数字的范围为1 ... N, 打印重复的元素, 要求O(M + N), 不可以用额外的空间
数组有N+M个数字, 数字的范围为1 ... N, 打印重复的元素, 要求O(M + N), 不可以用额外的空间 1.题目中要求我们不能使用额外的空间,那么我们能采用在原数组上做文章,这里的重点是如何 ...
- pywinauto简单介绍
Pywinauto是基于Python开发的,用于自动化测试的脚本模块,主要操作于Windows标准图形界面.它可以允许你很容易的发送鼠标.键盘动作给Windows的对话框和控件. 其中,最主要功能为对 ...
- Hyper-V中安装CentOS分辨率修改
Hyper-V还是极好用的,不过对linux的支持优点问题, 比如默认情况,linux分辨率被锁定了,这里有一个比较简单的方法修改,针对CentOS grubby --update-kernel=AL ...
- MYSQL中插入数据时出现的问题:
问题: mysql',default,default); ERROR (HY000): Incorrect string value: 解决方案: 首先查看自己的数据表情况: mysql> SH ...
- BZOJ 3983 Takeover Wars 解题报告
我猜了一个结论,能合并就合并,到了必须要敌对交易的时候才进行敌对交易. 然后合并的话,肯定是拿最大的两个去合并. 至于敌对交易,肯定是干掉对方最大的公司才是有意义的. 于是各种分类讨论...看代码好了 ...
- 不改变中间层,如何玩转 .NET 的远程处理功能?
原文链接: https://msdn.microsoft.com/enus/library/aa289846(v=vs.71).aspx Visual Studio .NET 2003 该方案展示了传 ...