继续上一篇的内容。上一篇的内容为:

Spark中Master源码分析(一) http://www.cnblogs.com/yourarebest/p/5312965.html

4.receive方法,receive方法中消息类型主要分为以下12种情况:
(1)重新选择了新Leader,进行数据的恢复
(2)恢复完毕,重新创建Driver,完成资源的重新分配
(3)触发Leadership的选举
(4)Master注册新的Worker
(5)Master注册新的App,然后重新分配资源
(6)Executor转态发生改变,比如正在运行,执行完毕后会发生的情况
(7)Driver转态发生变化,进行相应的操作
(8)心跳机制,通过该机制master和worker保持联系
(9)master对于app的状态的处理
(10)worker调度状态改变响应
(11)没有注册的app将认为已经完成了并移除
(12)通过worker是否超时,从而判断worker是否dead

12种情况详细代码如下所示:
(1)重新选择了新Leader,进行数据的恢复

case ElectedLeader => {
val (storedApps, storedDrivers, storedWorkers) = persistenceEngine.readPersistedData(rpcEnv)
state = if (storedApps.isEmpty && storedDrivers.isEmpty && storedWorkers.isEmpty) {
RecoveryState.ALIVE
} else {
RecoveryState.RECOVERING
}
logInfo("I have been elected leader! New state: " + state)
if (state == RecoveryState.RECOVERING) {
//恢复数据中
beginRecovery(storedApps, storedDrivers, storedWorkers)
//守护单线程1s后发送一个完成恢复的请求,并异步等待响应
recoveryCompletionTask = forwardMessageThread.schedule(new Runnable {
override def run(): Unit = Utils.tryLogNonFatalError {
self.send(CompleteRecovery)
}
}, WORKER_TIMEOUT_MS, TimeUnit.MILLISECONDS)
}
}

(2)恢复完毕,重新创建Driver,完成资源的重新分配

case CompleteRecovery => completeRecovery()详见下①

①completeRecovery方法如下:

private def completeRecovery() {
if (state != RecoveryState.RECOVERING) { return }
state = RecoveryState.COMPLETING_RECOVERY
//kill所有的不响应的workers和apps
workers.filter(.state == WorkerState.UNKNOWN).foreach(removeWorker)
apps.filter(
.state == ApplicationState.UNKNOWN).foreach(finishApplication)
// 重新创建Driver
drivers.filter(_.worker.isEmpty).foreach { d =>
logWarning(s"Driver ${d.id} was not found after master recovery")
if (d.desc.supervise) {
logWarning(s"Re-launching ${d.id}")
relaunchDriver(d)详见下②
} else {
removeDriver(d.id, DriverState.ERROR, None)
logWarning(s"Did not re-launch ${d.id} because it was not supervised")
}
}

②relaunchDriver方法如下,将Driver的转态为RELAUNCHING,添加到即将创建的Driver列表中,然后重新分配资源

private def relaunchDriver(driver: DriverInfo) {
driver.worker = None
driver.state = DriverState.RELAUNCHING
waitingDrivers += driver
//重新分配资源,详见下③
schedule()
}

③schedule的方法如下,该方法主要为等待执行的apps安排可用的资源,每当一个新的app提交或可用资源(worker等)发生变化时调用

private def schedule(): Unit = {
if (state != RecoveryState.ALIVE) { return }
// Drivers优先于executors
// 通过Random.shuffle返回一个新的乱序排序的workers集合
val shuffledWorkers = Random.shuffle(workers)
for (worker <- shuffledWorkers if worker.state == WorkerState.ALIVE) {
for (driver <- waitingDrivers) {
if (worker.memoryFree >= driver.desc.mem && worker.coresFree >= driver.desc.cores) {
//根据worker和driver信息创建worker,详见下④
launchDriver(worker, driver)
waitingDrivers -= driver
}
}
}
//调用和创建workers上的executors
startExecutorsOnWorkers()
}

④ launchDriver方法如下,根据worker和driver信息创建worker

private def launchDriver(worker: WorkerInfo, driver: DriverInfo) {
logInfo("Launching driver " + driver.id + " on worker " + worker.id)
//将worker的资源分配给driver
worker.addDriver(driver)
driver.worker = Some(worker)
//worker将启动driver
worker.endpoint.send(LaunchDriver(driver.id, driver.desc))
//将driver的状态置位RUNNING
driver.state = DriverState.RUNNING
}

(3)触发Leadership的选举

case RevokedLeadership => {
logError("Leadership has been revoked -- master shutting down.")
System.exit(0)
}

(4)Master注册新的Worker,然后重新分配资源

case RegisterWorker(
id, workerHost, workerPort, workerRef, cores, memory, workerUiPort, publicAddress) => {
logInfo("Registering worker %s:%d with %d cores, %s RAM".format(
workerHost, workerPort, cores, Utils.megabytesToString(memory)))
if (state == RecoveryState.STANDBY) {
} else if (idToWorker.contains(id)) {
//通知worker注册失效,并退出
workerRef.send(RegisterWorkerFailed("Duplicate worker ID"))
} else {
val worker = new WorkerInfo(id, workerHost, workerPort, cores, memory,
workerRef, workerUiPort, publicAddress)
if (registerWorker(worker)) {
//将新添加的worker信息持久化
persistenceEngine.addWorker(worker)
//worker发送RegisteredWorker消息,并开始向master发送心跳
workerRef.send(RegisteredWorker(self, masterWebUiUrl))
//重新分配资源
schedule()
} else {
val workerAddress = worker.endpoint.address
logWarning("Worker registration failed. Attempted to re-register worker at same " + "address: " + workerAddress)workerRef.send(RegisterWorkerFailed("Attempted to re-register worker at same address: " + workerAddress))
}
}
}

(5)Master注册新的App,然后重新分配资源

case RegisterApplication(description, driver) => {
if (state == RecoveryState.STANDBY) {
} else {
logInfo("Registering app " + description.name)
//根据appdescription和driver创建app
val app = createApplication(description, driver),详见下①
//注册app
registerApplication(app),详见下②
logInfo("Registered app " + description.name + " with ID " + app.id)
//将app持久化
persistenceEngine.addApplication(app)
//driver将给AppClient发送RegisteredApplication消息
driver.send(RegisteredApplication(app.id, self))
//重新分配资源
schedule()
}
}

①createApplication方法如下,根据appdescription和driver创建app

private def createApplication(desc: ApplicationDescription, driver: RpcEndpointRef):
ApplicationInfo = {
val now = System.currentTimeMillis()
val date = new Date(now)
//用App的主构造器创建一个App
new ApplicationInfo(now, newApplicationId(date), desc, date, driver, defaultCores)
}

②registerApplication方法如下:

private def registerApplication(app: ApplicationInfo): Unit = {
val appAddress = app.driver.address
if (addressToApp.contains(appAddress)) {
logInfo("Attempted to re-register application at same address: " + appAddress)
return
}
//将app的源信息,比如状态、运行时间、核数注册到metrics系统中
applicationMetricsSystem.registerSource(app.appSource)
apps += app
idToApp(app.id) = app
endpointToApp(app.driver) = app
addressToApp(appAddress) = app
waitingApps += app
}

(6)Executor转态发生改变,比如正在运行,执行完毕后会发生的情况

case ExecutorStateChanged(appId, execId, state, message, exitStatus) => {
val execOption = idToApp.get(appId).flatMap(app => app.executors.get(execId))
execOption match {
case Some(exec) => {
val appInfo = idToApp(appId)
exec.state = state
//如果executor正在执行任务,将retry次数置位0
if (state == ExecutorState.RUNNING) { appInfo.resetRetryCount() } //给appClient发送ExecutorUpdated消息
exec.application.driver.send(ExecutorUpdated(execId, state, message, exitStatus))
//如果Executor执行完了,移除worker和app上的executor
if (ExecutorState.isFinished(state)) {
logInfo(s"Removing executor ${exec.fullId} because it is $state")
//如果一个app已经执行完了,将它的信息反馈在Web UI上
if (!appInfo.isFinished) {
appInfo.removeExecutor(exec)
}
exec.worker.removeExecutor(exec)
val normalExit = exitStatus == Some(0)
// 只要retry次数小于10,那么executor的资源就会不断的调整
if (!normalExit) {
if (appInfo.incrementRetryCount() < ApplicationState.MAX_NUM_RETRY) {
//调整资源
schedule()
} else {
val execs = appInfo.executors.values
if (!execs.exists(_.state == ExecutorState.RUNNING)) {
logError(s"Application ${appInfo.desc.name} with ID ${appInfo.id} failed " +
s"${appInfo.retryCount} times; removing it")
removeApplication(appInfo, ApplicationState.FAILED)
}
}
}
}
}
case None =>
logWarning(s"Got status update for unknown executor $appId/$execId")
}
}

(7)Driver转态发生变化,进行相应的操作

case DriverStateChanged(driverId, state, exception) => {
state match {
case DriverState.ERROR | DriverState.FINISHED | DriverState.KILLED | DriverState.FAILED =>
removeDriver(driverId, state, exception)
case _ =>
throw new Exception(s"Received unexpected state update for driver $driverId: $state")
}
}

(8)心跳机制,通过该机制master和worker保持联系

case Heartbeat(workerId, worker) => {
idToWorker.get(workerId) match {
case Some(workerInfo) =>
//更新worker的最后一次心跳时间
workerInfo.lastHeartbeat = System.currentTimeMillis()
case None =>
if (workers.map(_.id).contains(workerId)) {
logWarning(s"Got heartbeat from unregistered worker $workerId." +
" Asking it to re-register.")
worker.send(ReconnectWorker(masterUrl))
} else {
logWarning(s"Got heartbeat from unregistered worker $workerId." +
" This worker was never registered, so ignoring the heartbeat.")
}
}
}

(9)master对于app的状态的处理

case MasterChangeAcknowledged(appId) => {
idToApp.get(appId) match {
case Some(app) =>
logInfo("Application has been re-registered: " + appId)
app.state = ApplicationState.WAITING
case None =>
logWarning("Master change ack from unknown app: " + appId)
}
if (canCompleteRecovery) { completeRecovery() }
}

(10)worker调度状态改变响应

case WorkerSchedulerStateResponse(workerId, executors, driverIds) => {
idToWorker.get(workerId) match {
case Some(worker) =>
logInfo("Worker has been re-registered: " + workerId)
worker.state = WorkerState.ALIVE
val validExecutors = executors.filter(exec => idToApp.get(exec.appId).isDefined)
for (exec <- validExecutors) {
val app = idToApp.get(exec.appId).get
val execInfo = app.addExecutor(worker, exec.cores, Some(exec.execId))
worker.addExecutor(execInfo)
execInfo.copyState(exec)
}
for (driverId <- driverIds) {
drivers.find(_.id == driverId).foreach { driver =>
driver.worker = Some(worker)
driver.state = DriverState.RUNNING
worker.drivers(driverId) = driver
}
}
case None =>
logWarning("Scheduler state from unknown worker: " + workerId)
}
if (canCompleteRecovery) { completeRecovery() }
}

(11)没有注册的app将认为已经完成了并移除

case UnregisterApplication(applicationId) =>
logInfo(s"Received unregister request from application $applicationId")
idToApp.get(applicationId).foreach(finishApplication)

(12)通过worker是否超时,从而判断worker是否dead

case CheckForWorkerTimeOut => {
//移除Dead worker,如果系统当前时间-Worker超时(1min)>worker最后心跳时间,判断worker为dead并移除
timeOutDeadWorkers()
}

【原】Spark中Master源码分析(二)的更多相关文章

  1. 【原】Spark中Master源码分析(一)

    Master作为集群的Manager,对于集群的健壮运行发挥着十分重要的作用.下面,我们一起了解一下Master是听从Client(Leader)的号召,如何管理好Worker的吧. 1.家当(静态属 ...

  2. 【原】Spark中Client源码分析(二)

    继续前一篇的内容.前一篇内容为: Spark中Client源码分析(一)http://www.cnblogs.com/yourarebest/p/5313006.html DriverClient中的 ...

  3. 【原】 Spark中Worker源码分析(二)

    继续前一篇的内容.前一篇内容为: Spark中Worker源码分析(一)http://www.cnblogs.com/yourarebest/p/5300202.html 4.receive方法, r ...

  4. Spark中决策树源码分析

    1.Example 使用Spark MLlib中决策树分类器API,训练出一个决策树模型,使用Python开发. """ Decision Tree Classifica ...

  5. 【原】Spark中Client源码分析(一)

    在Spark Standalone中我们所谓的Client,它的任务其实是由AppClient和DriverClient共同完成的.AppClient是一个允许app(Client)和Spark集群通 ...

  6. 【原】 Spark中Worker源码分析(一)

    Worker作为对于Spark集群的健壮运行起着举足轻重的作用,作为Master的奴隶,每15s向Master告诉自己还活着,一旦主人(Master>有了任务(Application),立马交给 ...

  7. Spark RPC框架源码分析(二)RPC运行时序

    前情提要: Spark RPC框架源码分析(一)简述 一. Spark RPC概述 上一篇我们已经说明了Spark RPC框架的一个简单例子,Spark RPC相关的两个编程模型,Actor模型和Re ...

  8. Spark Scheduler模块源码分析之DAGScheduler

    本文主要结合Spark-1.6.0的源码,对Spark中任务调度模块的执行过程进行分析.Spark Application在遇到Action操作时才会真正的提交任务并进行计算.这时Spark会根据Ac ...

  9. Spark Scheduler模块源码分析之TaskScheduler和SchedulerBackend

    本文是Scheduler模块源码分析的第二篇,第一篇Spark Scheduler模块源码分析之DAGScheduler主要分析了DAGScheduler.本文接下来结合Spark-1.6.0的源码继 ...

随机推荐

  1. live 写博

    1           2           3           4           5         1       2       3       4       5         ...

  2. Sublime Text3注册码

    这是一个注册码-– BEGIN LICENSE -– Michael Barnes Single User License EA7E-821385 8A353C41 872A0D5C DF9B2950 ...

  3. 用twisted 做一个日志收集系统

    混沌初开 起初我是不会上logging模块的,直接导致了即时有了日志,我也存到了数据库中,而且量也不大,是否能遇到异常只能靠运气了 开天辟地 不得不说,没有任何输出的线上环境真的挺难调试的,当然,聪明 ...

  4. 【PyInstaller安装及使用】将py程序转换成exe可执行程序

    1  配置所需的环境 平台:windows7 64位,已经安装了python(x,y) 若未安装python环境,请自行安装python2.7或者其他版本,Python安装完成以后,需要将Python ...

  5. 在C#中IEnumerable与IEnumerator

    对于很多刚开始学习C#同学来说经常会遇到IEnumerable这个关键字,enumerate在字典里的解释是列举,枚举,因此可想而知这个关键字肯定是和列举数据有关的操作. public interfa ...

  6. COOKIE之安全设置漫谈

    一.标题:COOKIE之安全设置漫谈 副标:httponly属性和secure属性解析 二.引言 经常有看到XSS跨站脚本攻击窃取cookie案例,修复方案是有httponly.今天写出来倒腾下... ...

  7. python re.sub

    python re.sub   python re.sub属于python正则的标准库,主要是的功能是用正则匹配要替换的字符串然后把它替换成自己想要的字符串的方法下面给个例子:import relin ...

  8. easyui源码翻译1.32--Droppable(放置)

    前言 使用$.fn.droppable.defaults重写默认值对象.下载该插件翻译源码 源码 /** * jQuery EasyUI 1.3.2 * *翻译:lbq --放置 拉伸 */ (fun ...

  9. MyGui 3.2.0(OpenGL平台)的编译(五篇文章)

    MyGui是一个用来创建用户图形界面的库,用于游戏和3D应用程序.这个库的主要目标是达到:快速.灵活.易用. 1.下载准备: 源代码:http://svn.code.sf.net/p/my-gui/c ...

  10. 点点滴滴-ConfigurationManager.AppSettings

    在写程序的配置文件,里面添加了几个配置,下面是appSettings节点的设置 <appSettings> <add key="StyleFolder" valu ...