本题的主要算法就是区间更新和区间求和;

可以用线段树和树状数组来做;

感觉线段树写的太麻烦了,看到官方题解上说可以用树状数组做,觉得很神奇,以前用过的树状数组都是单点维护,区间求和的;

其实树状数组还可以区间维护,单点求值;和区间维护,区间求和的;

详情请见博客

#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#define maxn 4000010
#define ll long long
using namespace std; ll a[][maxn];
ll b[][maxn]; void add_a(int flag,int x,ll value)
{
while(x>)
{
a[flag][x]+=value;
x-=x&(-x);
}
} void add_b(int flag,int n,int x,ll value)
{
for(int i=x;i<=n;i+=i&(-i))
b[flag][i]+=x*value;
} ll sum_a(int flag,int n,int x)
{
ll sum=;
while(x<=n)
{
sum+=a[flag][x];
x+=x&(-x);
}
return sum;
} ll sum_b(int flag,int x)
{
ll sum=;
while(x>)
{
sum+=b[flag][x];
x-=x&(-x);
}
return sum;
} ll getsum(int flag,int n,int x)
{
if(x)
return sum_a(flag,n,x)*x+sum_b(flag,x-);
else
{
return ;
}
} int main()
{
int n,m,w;
int comand;
int x1,x2,y1,y2;
int v;
scanf("%d%d%d",&n,&m,&w);
for(int i=; i<w; i++)
{
scanf("%d",&comand);
if(comand==)
{
scanf("%d%d%d%d%d",&x1,&y1,&x2,&y2,&v);
ll vy=v*(y2-y1+);
ll vx=v*(x2-x1+);
add_a(,x2,vy);
add_b(,n,x2,vy);
if(x1>)
{
add_a(,x1-,-vy);
add_b(,n,x1-,-vy);
}
add_a(,y2,vx);
add_b(,m,y2,vx);
if(y1>)
{
add_a(,y1-,-vx);
add_b(,m,y1-,-vx);
}
}
else
{
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
ll tmp1=getsum(,n,x2)-getsum(,n,x1-);
ll tmp2=getsum(,m,y1-);
ll tmp3=getsum(,m,m)-getsum(,m,y2);
cout<<tmp1-tmp2-tmp3<<endl;
}
}
return ;
}

codeforces 390E Inna and Large Sweet Matrix的更多相关文章

  1. CodeForces 390E Inna and Large Sweet Matrix(树状数组改段求段)

    树状数组仅仅能实现线段树区间改动和区间查询的功能,能够取代不须要lazy tag的线段树.且代码量和常数较小 首先定义一个数组 int c[N]; 并清空 memset(c, 0, sizeof c) ...

  2. Codeforces 390E Inna and Large Sweet Matrix 树状数组改段求段

    题目链接:点击打开链接 题意:给定n*m的二维平面 w个操作 int mp[n][m] = { 0 }; 1.0 (x1,y1) (x2,y2) value for i : x1 to x2 for ...

  3. CF390-E. Inna and Large Sweet Matrix(区间更新+区间查询)

    题意很好理解,不说了 题解就是每次把值压缩成一维,比如x上,这样就可以求出任意宽度的整个竖条的和. 如这张图,求的是s5-(s1+s3+s7+s9) 因为可以求出一整竖条和一整横条,我们可以求出是s2 ...

  4. codeforces C. Inna and Huge Candy Matrix

    http://codeforces.com/problemset/problem/400/C 题意:给你一个n*m的矩阵,然后在矩阵中有p个糖果,给你每个糖果的初始位置,然后经过x次顺时针反转,y次旋 ...

  5. codeforces C. Inna and Huge Candy Matrix 解题报告

    题目链接:http://codeforces.com/problemset/problem/400/C 题目意思:给出一个n行m列的矩阵,问经过 x 次clockwise,y 次 horizontal ...

  6. codeforces 390D Inna and Sweet Matrix

    几个小结论: 1.路径长度=i+j-1; 2.最简单的走法是先横走再竖着走或者先竖着走再横着走 #include<cstdio> #include<cstring> using ...

  7. codeforces round #234B(DIV2) C Inna and Huge Candy Matrix

    #include <iostream> #include <vector> #include <algorithm> #include <utility> ...

  8. codeforces 400 C Inna and Huge Candy Matrix【模拟】

    题意:给出一个矩形的三种操作,顺时针旋转,逆时针旋转,对称,给出原始坐标,再给出操作数,问最后得到的坐标 画一下模拟一下操作就可以找到规律了 #include<iostream> #inc ...

  9. codeforces 374A Inna and Pink Pony 解题报告

    题目链接:http://codeforces.com/problemset/problem/374/A 题目意思:给出一个 n 行  m 列 的棋盘,要将放置在坐标点为(i, j)的 candy 移动 ...

随机推荐

  1. 关于常用的git命令列表

    我博客园中所写的git内容几乎都是看的蒋鑫老师的<git权威指南>这本书实在太好了. 常用的Git命令. git add  添加到暂存区 git add interactive  交互式添 ...

  2. centos_Error: Protected multilib versions_解决方法

    在yum命令后面加入忽略参数:--setopt=protected_multilib=false you can also use --setopt=protected_multilib=false ...

  3. ajax_jsonp —— 跨域

    JSONP:原理是script标签 一.抓包 二.不用每次都连接 localhost 的方法   三.抓包后所需的参数 su?:后面跟的是传递过去的参数. cb:是 callback 后面跟的是对返回 ...

  4. 优雅的实现Activiti动态调整流程(自由跳转、前进、后退、分裂、前加签、后加签等),含范例代码!

    最近对Activiti做了一些深入的研究,对Activiti的流程机制有了些理解,对动态调整流程也有了一些实践方法. 现在好好总结一下,一来是对这段时间自己辛苦探索的一个记录,二来也是为后来者指指路~ ...

  5. java反射温习一下

    public class LoveReflect { public static class Demo implements Serializable{ } public static void ma ...

  6. 阿里云 mysql 无缘无故挂掉

    近期在登录自己博客时,老是报数据库连接失败,然后重启服务器就好了.但是,重启服务器很耗时间,不方便,不能每次都重启吧于是远程连接服务器看了一下原来是数据库服务挂掉了启动时还报错于是查看了下错误日志 2 ...

  7. make fontconfig 时出现No package ‘libxml-2.0′ found的解决方法

    这里显示一个错误信息:checking for LIBXML2… configure: error: Package requirements (libxml-2.0 >= 2.6) were ...

  8. Sencha Touch id 和 itemId

    通过id获得组件: var view=Ext.getCmp('id'); 通过itemId获得组件: var view = ComponentQuery.query('view_xtype'), // ...

  9. string[] 和 arraylist互转及问题解决

    1,String 数组转成 list<String> String[] s={"1","2","3","5" ...

  10. SDL_Test库(1)——SDL不用TTF库绘制文字

    SDL库有很多的扩展,这很方便.但是每个扩展库都很臃肿,一般都会拖上额外的两三个开源库,更有甚者,扩展库的大小比SDL库本身还大得多.但有一个自带的.很有用的库很容易被大家忽视.它就是本文要讲的SDL ...