一、摘要

这是一篇在性格探测这方面比较新的文章了, 时间是2018年,作者提出了一种分层结构的神经网络——AttRCNN, 还有一种基于CNN的变体,从用户text学习到语义的特征, 然后把这个语义特征和文本的语言学特征结合起来,放到传统的回归模型里预测5大性格的分数

个人觉得 比较有新意的一点是能打分? 而不是简单的判断true or false

二、模型过程

1.文本预处理

1.1 文本切分

简单通过空格来切分句子得到单词, 不改版任何的字母,这是为了尽可能的保留文本, 得到完整的特征, 但是会去掉一些表情,例如: ∧ ∧, (/∼ /)

1.2 文本统一

减少类似重复的字母, 例如busyyyy, busyyyyyyyyy, 这些都应该看成busy, 同时转换成小写,把处理好的单词列表进入过程2

2. 基于统计的特征提取

2.1 提取特殊的语言统计特征

作者认为具有不同性格的人可能有不同的使用标点符号,符号,表情符号和大写字母的习惯, 所以作者从这些特殊的方面进行统计,提取5个特征, 这个是作者自己设置的, 当然你也可以找新的特征

  • (1) rateof emoticons;
  • (2) rate of tokens which have no less than 3 tandem duplicated letters or symbols;
  • (3) rate of capital letters;
  • (4) rate of capitalized words;
  • (5) total number of text posts of each user.

2.2 提取基于字典的语言特征

作者通过Linguistic Inquiry and Word Count (LIWC)工具,分析出64个基于字典的语言特征

3. 基于深度学习的文本建模

3.1 基于无监督学习的词嵌入

基于词袋模型,使用word2vec 训练我们的文本, 然后得到每个单词的词向量, 对于未知的word全部随机给一个[-0.25, +0.25]的正态分布的参数

3.2 基于监督学习的深度语义特征提取

这是文章的重点部分, 作者定义了一个叫做AttRCNN-CNNs的模型来提取语义特征, 因为它是一个AttRCNN, CNNs 的分层结构

可以从这张图看到AttRCNN-CNNs模型的层次:

3.2.1 AttRCNN进行句子向量化

RCNN作为启发, 作者构想出一种AttRCNN用于把句子变成句子向量。

结构图如下:

具体过程分为5个步骤,下面将详细解释

S1. Word Embedding

通过训练好的词嵌入矩阵,把句子里的每个word,变成词向量。

S2. 基于GRU的神经网络得到word上下文特征

GRU是LSTM网络的一种效果很好的变体,它较LSTM网络的结构更加简单,而且效果也很好,因此也是当前非常流形的一种网络。GRU既然是LSTM的变体,因此也是可以解决RNN网络中的长依赖问题。

输入词向量到不同的两个GRU分别得到单词的上文特征,和下文特征,两个GRU结构相同,只是扫描方向不同, 下面已向前扫描的GRU作为解释。

S2-1. 提取上文特征

使用前向的GRU, 在顶层使用batch normalization训练。对于每个word得到一个50维的注释向量

下图是如何从

S2-2. 使用ReLU作为激活函数

使用ReLU函数作为激活函数

线性整流函数(Rectified Linear Unit, ReLU),又称修正线性单元,是一种人工神经网络中常用的激活函数(activation function),通常指代以斜坡函数及其变种为代表的非线性函数。

S2-3. 加入dropout层

为防止过拟合, 还加上了dropout层

S3. 组合上文特征,下文特征,本身特征

通过上面的两个GRU神经网络, 我们分别得到每个单词的上文或下文特征,我们将其组合

50(上文) + E(word本身) + 50(下文)

S4. 全连接层

通过全连接层把100+E维的特征变成100维

S5. 词向量组变句向量

通过max-pooling层,我们把词向量变成句向量,完成此模块的任务。

3.2.2 CNNs进行文档向量化

使用CNNs来把得到的句子向量变成文档向量,

作者使用的是CNN-based Inception architecture, 一种基于CNN的结构来实现。

(注意不是CNN)

CNNs的具体结构如下

3.2.3 训练模型

模型采用批量梯度下降, 使用均方误差作为目标函数,最大迭代30轮.

4.预测

经过上面的步骤我们得到了一个119维的特征向量, 其中包括5个特殊方面的语言特征, 64个基于字典的语言特征, 50个文档语义特征, 我们将其放到GBR里,得到分数,当然这个回归算法在后面的实验中会尝试很多。

三、实验结果

待分析~~

Deep learning-based personality recognition from text posts of online social networks 阅读笔记的更多相关文章

  1. 个性探测综述阅读笔记——Recent trends in deep learning based personality detection

    目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 ...

  2. 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第三周:浅层神经网络(Shallow neural networks) -课程笔记

    第三周:浅层神经网络(Shallow neural networks) 3.1 神经网络概述(Neural Network Overview) 使用符号$ ^{[

  3. 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives

    (聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...

  4. 论文翻译:2021_Towards model compression for deep learning based speech enhancement

    论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model c ...

  5. 【RS】Deep Learning based Recommender System: A Survey and New Perspectives - 基于深度学习的推荐系统:调查与新视角

    [论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys  ...

  6. Predicting effects of noncoding variants with deep learning–based sequence model | 基于深度学习的序列模型预测非编码区变异的影响

    Predicting effects of noncoding variants with deep learning–based sequence model PDF Interpreting no ...

  7. Paper Reading——LEMNA:Explaining Deep Learning based Security Applications

    Motivation: The lack of transparency of the deep  learning models creates key barriers to establishi ...

  8. 【Deep Learning】Hinton. Reducing the Dimensionality of Data with Neural Networks Reading Note

    2006年,机器学习泰斗.多伦多大学计算机系教授Geoffery Hinton在Science发表文章,提出基于深度信念网络(Deep Belief Networks, DBN)可使用非监督的逐层贪心 ...

  9. What are some good books/papers for learning deep learning?

    What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, ...

随机推荐

  1. OSCP Learning Notes - Exploit(9)

    Tool: Metasploit 1. Start the msfconsole tool. msfconsole 2.Search ssh related modules. 3.Use the &q ...

  2. 直接在x86硬件上显示图片(无os)

    1 任务 为了学习计算机底层和os,我给自己布置了一个任务:在x86硬件上,使用c和nasm来显示一张bmp图片.完成这个任务,前后估计花了2个月的业余时间. 这个任务涉及了很多知识点,包括:启动区. ...

  3. echarts 实战 : 标题的富文本样式

    官方文档在这一块交待的不是很清楚,记录一下. title:{ left:15, top:10, subtext:"AAA {yellow|316} BBB {blue|219}", ...

  4. Asp.Net Core 附加进程调试

    第一种:VS调试 vs打开项目,F5启动调试 第二种:附加到w3wp.exe进程调试 一.安装NET Core Windows Server Hosting软件包 安装 .NET Core 托管捆绑包 ...

  5. python如何编写win程序

    python可以编写win程序.win程序的格式是exe,下面我们就来看一下使用python编写exe程序的方法. 编写好python程序后py2exe模块即可将其打包为exe程序. 实际操作过程: ...

  6. Dicom文件基本操作

    官方文档 网址:https://github.com/fo-dicom/fo-dicom托管在github上. 官方例子 Dicom文件基本操作 var file = DicomFile.Open(@ ...

  7. 面试题四十三:在1~n整数中1出现的次数

    方法一:直观来看,遍历1到n,每个数去做%10的循环判断 int Number1_B_1toN( int n){ int sum=0; for(int i=1;i<=n;i++){ int k= ...

  8. pillow 压缩和放大图片

    记住这个  resize()方法 from PIL import Image img=Image.open("test.png") x,y=img.size print(x,y) ...

  9. Java+MySQL企业级实训全套课程

    总纲 JAVA基础部分 教学视频:第一讲:Java入门与环境搭建    提取码:h9vm第二讲:变量与运算符    提取码:928t第三讲:顺序结构及条件结构    提取码:3v1l第四讲:while ...

  10. JavaScript运算符与流程控制

    JavaScript运算符与流程控制 运算符 赋值运算符 使用=进行变量或常量的赋值. <script> ​ let username = "YunYa"; ​ < ...