本篇并非介绍如何从0开始开发遗传算法框架,反而推荐各位使用已有的GA库jenetics来做遗传算法。

GA算法的逻辑还是贴下:

好了,下面介绍的是基于jenetics开发的更贴近业务侧的框架,以及使用方法。

pom依赖,毕竟java的嘛,就不要用matlab、R、python这些了

<!-- https://mvnrepository.com/artifact/io.jenetics/jenetics -->
<dependency>
<groupId>io.jenetics</groupId>
<artifactId>jenetics</artifactId>
<version>5.1.0</version>
</dependency>
<dependency>
<groupId>io.jenetics</groupId>
<artifactId>jenetics.ext</artifactId>
<version>5.1.0</version>
</dependency>

先看看我们提供的这个框架,能怎样简化业务侧代码吧:

public static void main(String[] args) {
ExecutorService executorService = Executors.newFixedThreadPool(5); //需要指定一个线程池,因为GA算法需要很多运算 Demo1SolutionConverter demo1SolutionConverter = new Demo1SolutionConverter(); //这个class中定义了GA算法所需的底层基因序列的定义、以及业务解决方案class与基因的互相转换逻辑
Demo1FitnessBuilder fitnessBuilder = new Demo1FitnessBuilder(); //这个class定义了适应度函数的指向(遗传算法非常依赖适应度函数,非常非常依赖,重中之重) EngineInvokeOptions options = new EngineInvokeOptions(); //引擎调用默认参数,如需改写默认参数单独修改即可
options.setFitnessBuilder(fitnessBuilder);
options.setEnableMaxLimits(true); //设置为停止条件为最大种群次数限制
options.setMaxLimits(20); //设置为最大次数限制为20次,既:20次种群迭代 for(int idx=0;idx<20;idx++) { //连续执行20次看效果
MinMaxScaler minMaxScaler = new MinMaxScaler(100, false); GAEngine gaEngine = new GAEngine(50, executorService); Demo1SolutionConverter.Demo1Solution solution = (Demo1SolutionConverter.Demo1Solution) gaEngine.generate(demo1SolutionConverter, minMaxScaler, options);
System.out.println(solution.toString());
} executorService.shutdown();
}  

我们先看看核心class:Demo1SolutionConverter,这个是每个业务都不同的地方,需要单独业务单独编码

public class Demo1SolutionConverter extends DefaultSolutionConverter {                                         //DefaultSolutionConverter是框架里的默认实现,已经实现了很多默认方法
@Override
public AbstractSolution convert2Solution(EvolvingSolutionInfo solutionInfo) {
Demo1Solution solution=new Demo1Solution();
solution.setFitnessValues(solutionInfo.getFitnessValues()); Genotype<IntegerGene> geneMap=solutionInfo.getMap(); //这个是获取基因架 Chromosome<IntegerGene> chromosome=geneMap.getChromosome(); //获取默认的也就是第一个基因条 for(int idx=0;idx<chromosome.length();idx++) //开始业务解码
{
IntegerGene integerGene=chromosome.getGene(idx);
if(integerGene.intValue()==1)
{
solution.getSelectedIds().add(idx); //这里实现的解码逻辑:共10个数字,有2种可能0和1,0代表不选中,1代表选中,选中了就会加入selectedIds这个List里
}
} return solution;
} @Override
public Genotype<IntegerGene> loadGenotype() { //这个是唯一一个DefaultSolutionConverter种的抽象方法,必须实现,用来定义基因序列的组成
Genotype<IntegerGene> genotype=Genotype.of(
IntegerChromosome.of(0, 1, IntRange.of(10)) //10个基因,每个基因只有2种可能,0或者1
); return genotype;
} public double test(AbstractSolution solution) //这个是适应度函数定义,要注意入参和出参,这2个是固定的
{ //test是method名,待会会在后面介绍,会在其他class中指定过来
Demo1Solution s=(Demo1Solution)solution; long 偶数个数=s.getSelectedIds().stream().filter(f->f%2==0).count();
long 奇数个数=s.getSelectedIds().stream().filter(f->f%2!=0).count(); double score=(-偶数个数)+(+奇数个数); //score是适应度函数的分值,越小越优,由于我们希望不要奇数、只要偶数,所以偶数部分为负号、奇数部分为正号
return score;
} @Data
public class Demo1Solution extends DefaultSolution { //这个是业务解码后存放的class,很好理解 private List<Integer> selectedIds=new ArrayList<>(); @Override
public String toString() {
StringBuilder stringBuilder=new StringBuilder(); for(int id:selectedIds)
{
stringBuilder.append(id);
stringBuilder.append(", ");
} return stringBuilder.toString();
}
}
}  

然后再看看Demo1FitnessBuilder类,既:适应度函数指向类:

public class Demo1FitnessBuilder implements FitnessBuilder {
@Override
public Tuple2<Map<String, Object>, List<Tuple3<String, String, Double>>> build() { Map<String, Object> objConfigs= buildObjectAndConfigs();
List<Tuple3<String, String, Double>> fitnessConfigs=buildFitnessConfigs(); return Tuples.of(objConfigs, fitnessConfigs);
} private Map<String, Object> buildObjectAndConfigs() { Map<String, Object> configs=new HashMap<>(); Demo1SolutionConverter obj=new Demo1SolutionConverter(); //这里定义的是n个适应度函数所在的对象(此处只定义了1个,也可以多个)
configs.put("obj", obj); return configs;
} private List<Tuple3<String, String, Double>> buildFitnessConfigs() {
List<Tuple3<String, String, Double>> fitnessConfigs = new ArrayList<>(); fitnessConfigs.add(Tuples.of("obj", "test", 1D)); //obj和上面的对应,test指明了适应度函数是在obj这个对象中方法名为test的函数
//此处也可以多个
//1D代表默认权重,也可以定期较低的权重,比如:0.5D这种
   return fitnessConfigs;
}
}

  

看看程序的输出:

0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 3, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,

  

如同大家所见,GA算法的问题在于不太稳定,只能代表一种优化趋势,导致这样的原因有很多,最重要的原因还是在于智能算法一般使用的场景都是由于传统算法无能为力的场景,或者无法穷举的场景。

下面看看加大种群迭代次数是否能解决:

options.setMaxLimits(100);
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,
0, 2, 4, 6, 8,

  

算是表面解决了,但其实还有很多因素能导致不稳定,比如,我们从当前的10个数字,enlarge到50个数字,会怎样:

@Override
public Genotype<IntegerGene> loadGenotype() {
Genotype<IntegerGene> genotype=Genotype.of(
IntegerChromosome.of(0, 1, IntRange.of(50))
); return genotype;
}
0, 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 35, 36, 38, 40, 41, 42, 44, 46,
0, 2, 4, 6, 8, 10, 11, 12, 13, 14, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
2, 4, 5, 6, 8, 10, 12, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 6, 8, 10, 12, 14, 16, 18, 22, 24, 26, 28, 30, 32, 34, 35, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 8, 14, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 41, 42, 44, 46, 48,
0, 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 47, 48, 49,
0, 2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, 24, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46,
0, 2, 4, 6, 8, 10, 12, 13, 16, 18, 19, 22, 24, 26, 28, 30, 31, 32, 36, 38, 40, 42, 43, 44, 45, 46, 48,
0, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 28, 30, 32, 34, 38, 40, 42, 44, 45, 46, 48,
0, 1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 16, 18, 20, 21, 22, 23, 24, 26, 28, 30, 32, 36, 38, 40, 42, 44, 46, 48,
2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 44, 46, 48,
0, 2, 6, 8, 10, 12, 14, 18, 20, 22, 24, 26, 28, 32, 34, 36, 38, 40, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 38, 40, 42, 43, 44, 46, 48, 49,
0, 2, 4, 6, 8, 9, 10, 12, 14, 18, 22, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 22, 24, 26, 32, 34, 36, 38, 40, 42, 44, 45, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 26, 28, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 13, 14, 16, 18, 20, 22, 24, 26, 28, 31, 32, 34, 38, 40, 42, 45, 46, 48,
0, 2, 4, 6, 8, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 27, 29, 30, 32, 34, 36, 38, 40, 46, 48,
0, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 25, 26, 28, 30, 32, 34, 36, 38, 40, 44, 46, 48,
0, 2, 4, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 28, 32, 34, 36, 38, 40, 42, 44, 46, 48,

  

哇塞,简直了,这结果。。。

再来:

options.setMaxLimits(2000);
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,   

  

体会到了不确定的痛苦了吗?

再来:

//        options.setEnableMaxLimits(true);
// options.setMaxLimits(2000);
options.setEnableSteadyFitness(true); //设置为稳定适应度函数值默认
options.setSteadyFitnessValue(1000); //当连续1000次的种群迭代的最优适应度函数值都稳定的时候,稳定就是分值没有超越当前的最好分值,然后才停止算法
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,

  

遗传算法是非常耗费算力的,能其他算法就尽量其他算法来做,真的。虽然GA也有很多优点,比如:

  1. 当无法穷举时,这个算法就是好的
  2. 当数据量较少时,这个算法也挺稳定(要调好参数)
  3. 当计算什么是好,什么是坏时的逻辑是非线性的时候,GA算法也是个很好的选项

完整代码下载,带demo+自研框架+底层是jenetics

完整下载 

 

遗传算法框架-基于java jenetics库实现的更多相关文章

  1. 自定义RPC框架--基于JAVA实现

    视频教程地址 DT课堂(原名颜群) 整体思路RPC(Remote Procedure Call),即远程过程调用.使用RPC,可以像使用本地的程序一样使用远程计算机上的程序.RPC使得开发分布式程序更 ...

  2. 完全开源Android网络框架 — 基于JAVA原生的HTTP框架

    HttpNet网络请求框架基于HttpUrlConnection,采用Client + Request + Call的请求模型,支持https默认证书,数字安全证书.支持http代理!后续将会实现队列 ...

  3. 【原创】三分钟教你学会MVC框架——基于java web开发(2)

    没想到我的上一篇博客有这么多人看,还有几位看完之后给我留言加油,不胜感激,备受鼓励,啥都别说了,继续系列文章之第二篇.(如果没看过我第一篇博客的朋友,可以到我的主页上先浏览完再看这篇文章,以免上下文对 ...

  4. 【原创】三分钟教你学会MVC框架——基于java web开发(1)

    MVC全名是Model View Controller,是模型(model)-视图(view)-控制器(controller)的缩写,一种软件设计典范,用于组织代码用一种业务逻辑和数据显示分离的方法. ...

  5. 基于java.util.logging实现轻量级日志记录库(增加根据当前类class初始化,修复线程池模型(javaEE)下的堆栈轨迹顺序与当前调用方法不一致问题)

    前言: 本章介绍自己写的基于java.util.logging的轻量级日志记录库(baseLog). 该版本的日志记录库犹如其名,baseLog,是个实现日志记录基本功能的小库,适合小型项目使用,方便 ...

  6. 基于java spring框架开发部标1078视频监控平台精华文章索引

    部标1078视频监控平台,是一个庞杂的工程,涵盖了多层协议,部标jt808,jt809,jt1078,苏标Adas协议等,多个平台功能标准,部标796标准,部标1077标准和苏标主动安全标准,视频方面 ...

  7. 9个基于Java的搜索引擎框架

    在这个信息相当繁杂的互联网时代,我们已经学会了如何利用搜索引擎这个强大的利器来找寻目标信息,比如你会在Google上搜索情人节如何讨女朋友欢心,你也会在百度上寻找正规的整容医疗机构(尽管有很大一部分广 ...

  8. 基于Java Netty框架构建高性能的部标808协议的GPS服务器

    使用Java语言开发一个高质量和高性能的jt808 协议的GPS通信服务器,并不是一件简单容易的事情,开发出来一段程序和能够承受数十万台车载接入是两码事,除去开发部标808协议的固有复杂性和几个月长周 ...

  9. 基于Java Mina框架的部标808服务器设计和开发

    在开发部标GPS平台中,部标808GPS服务器是系统的核心关键,决定了部标平台的稳定性和行那个.Linux服务器是首选,为了跨平台,开发语言选择Java自不待言. 我们为客户开发的部标服务器基于Min ...

随机推荐

  1. PyQt5主界面

    QMainWindow QMainWindow控件继承之QWidget控件,QWidget是所有控件的父类,主要提供界面的基本功能,包括边框.标题.工具栏.关闭按钮.最小化按钮以及最大化按钮等.子类中 ...

  2. elementUI form表单验证不通过的原因

    <el-form :model="form" :rules="rules"> <el-form-item prop="input&q ...

  3. Zookeeper集群部署及报错分析

    安装 下载压缩包 解压 修改zoo.cfg文件 创建myid文件 启动 自启动配置 有时间再补hhh 报错处理 很荣幸的遇到了大部分报错,日志再zookeeper目录的bin下的zookeeper.o ...

  4. CSS样式基础2

    CSS: 一.常用样式:字体,颜色,背景 二.布局:浮动  定位  标签特性 三.标签盒子模型: 边距  边框 四.动画:旋转 渐变 注意:子标签会继承父标签的样式但不是所有的样式都会被继承. 1.1 ...

  5. 《Python Web开发学习实录》高清PDF版|百度网盘免费下载|Python Web开发学习实录

    <Python Web开发学习实录>高清PDF版|百度网盘免费下载|Python Web开发学习实录 提取码:9w3o 内容简介 Python是目前流行的动态脚本语言之一. 李勇,本书共1 ...

  6. 什么是Hexo博客

    Hexo 是一个基于nodejs 的静态博客网站生成器,作者是来自台湾的Tommy Chen. 特点: 不可思议的快速 ─ 只要一眨眼静态文件即生成完成 支持 Markdown 仅需一道指令即可部署到 ...

  7. PHP timezone_location_get() 函数

    ------------恢复内容开始------------ 实例 返回指定时区的位置信息: <?php$tz=timezone_open("Asia/Taipei");ec ...

  8. PHP floatval()、doubleval () 函数

    floatval 函数用于获取变量的浮点值. floatval 不能用于数组或对象.高佣联盟 www.cgewang.com 版本要求:PHP 4 >= 4.2.0, PHP 5, PHP 7. ...

  9. Calibre LVS BOX 详细用法

    https://www.cnblogs.com/yeungchie/ LVS BOX的使用对于后端的团队协作起到非常便利的作用. 通过在lvs rules file添加BOX的相关语句可以达到这个目的 ...

  10. Spring学习总结(4)-Spring生命周期的回调

    参考文档:https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/core.html#beans ...