有时数据读入后并不是对整体数据进行分析,而是数据中的部分子集,例如,对于地铁乘客量可能只关心某些时间段的流量,对于商品的交易可能只需要分析某些颜色的价格变动,对于医疗诊断数据可能只对某个年龄段的人群感兴趣等。所以,该如何根据特定的条件实现数据子集的获取将是本节的主要内容。

通常,在pandas模块中实现数据框子集的获取可以使用iloc,loc和ix三种‘方法’,这三种方法既可以对数据进行筛选,也可以实现变量的挑选,它们的语法可以表示

成【row_select,cols_select】.

iloc只能通过行号和列号进行数据筛选,我们可以将iloc中的‘i’理解为“integer”,即只能向【rows_select,cols_select】指定整数列表。该索引方式与数组的索引方式类似,都是从0开始,可以间隔取号,对于切片仍然无法取到上限。

loc要比iloc灵活一些,读者可以将loc中的“1”理解为“label”,即可以向【rows_select,col_select】指定具体的行标签和列标签。注意,这里是标签不再是索引。而且,还可以将rows_select指定为具体的筛选条件,在iloc中是无法做到的。

ix是iloc和loc的混合,读者可以将ix理解为“mix”,该方法吸收了iloc和loc的优点,市数据库子集的获取更加灵活。(此方法忽略,最新的模块好像已经去掉了,编译的时候警告,待再验证)

如下用具体的代码来说明iloc和loc二者之间的差异:

import pandas as pd
df1 = pd.DataFrame({'name':['张三','李四','王二','丁一','李五'],
'gender':['男','女','女','女','男'],
'age':[23,26,22,25,27]},columns = ['name','gender','age'])
df1

#去除数据集的中间三行(所有女性),并且返回姓名和年龄两列
df1.iloc[1:4,[0,2]]
df1.loc[1:3,['name','age']]
# df1.ix[1:3,[0,2]]

out:

再继续研究,将员工的姓名用做行标签

#将员工的姓名用作行标签
df2 = df1.set_index('name')
df2
#同样取出数据集的中间三行
df2.iloc[1:4,:]
df2.loc[['李四','王二','丁一'],:]

out:

很显然,在实际的学习和工作中,观测行的筛选很少是通过写入具体的行索引或行标签,而是对某些列做条件筛选,进而获得目标数据.例如,在上面的df1数据集中,如何返回所有男性的姓名和年龄,代码如下:

df1.loc[df1.gender == '男',['name','age']]

out:

pandas 数据子集的获取的更多相关文章

  1. 利用pandas进行数据子集的获取

  2. Python的工具包[1] -> pandas数据预处理 -> pandas 库及使用总结

    pandas数据预处理 / pandas data pre-processing 目录 关于 pandas pandas 库 pandas 基本操作 pandas 计算 pandas 的 Series ...

  3. pandas数据操作

    pandas数据操作 字符串方法 Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素 t = pd.Series(['a_b_c_d','c_d_e',np. ...

  4. Python使用Flask框架,结合Highchart处理csv数据(引申-从文件获取数据--从数据库获取数据)

    参考链接:https://www.highcharts.com.cn/docs/process-text-data-file 1.javascript代码 var options = { chart: ...

  5. pandas数据读取(DataFrame & Series)

    1.pandas数据的读取 pandas需要先读取表格类型的数据,然后进行分析 数据说明 说明 pandas读取方法 csv.tsv.txt 用逗号分割.tab分割的纯文本文件 pd.read_csv ...

  6. Qt之界面数据存储与获取(使用setUserData()和userData())

    在GUI开发中,往往需要在界面中存储一些有用的数据,这些数据可以来配置文件.注册表.数据库.或者是server. 无论来自哪里,这些数据对于用户来说都是至关重要的,它们在交互过程中大部分都会被用到,例 ...

  7. R语言学习笔记:取数据子集

    上文介绍了,如何生成序列,本文介绍一下如何取出其数据子集 取出元素的逻辑值 > x<-c(0,-3,4,-1,45,90,5) > x>0 [1] FALSE FALSE  T ...

  8. 数据分析与展示——Pandas数据特征分析

    Pandas数据特征分析 数据的排序 将一组数据通过摘要(有损地提取数据特征的过程)的方式,可以获得基本统计(含排序).分布/累计统计.数据特征(相关性.周期性等).数据挖掘(形成知识). .sort ...

  9. pandas小记:pandas数据输入输出

    http://blog.csdn.net/pipisorry/article/details/52208727 数据输入输出 数据pickling pandas数据pickling比保存和读取csv文 ...

随机推荐

  1. jQuery与javascript

    jQuery 是一个 JavaScript 库,jQuery 极大地简化了 JavaScript 编程. javaScript(js)和jQuery(jq) 都是找元素.操作元素 Dom操作的区别: ...

  2. 扯扯Java中的锁

    前言 又过去了一个周末,最近陆陆续续的看了<并发编程的艺术>一书,对锁有不少感悟,这次就聊聊Java中的锁事.本文纯粹是漫谈,想到哪说到哪,但准确性肯定会保证,倘若有不正确之处,还请交流指 ...

  3. manual for emacs markdown-mode(English)

    markdown-mode now requires Emacs 24.3 or later. Markup insertion and replacement keybindings under C ...

  4. springboot + ehcache

    一.使用 springboot + ehcache本地堆缓存实现相应功能 1.引入ehcache的jar包 2.创建ehcache的xml配置文件 <?xml version="1.0 ...

  5. Python os.lchown() 方法

    概述 os.lchown() 方法用于更改文件所有者,类似 chown,但是不追踪链接.高佣联盟 www.cgewang.com 只支持在 Unix 下使用. 语法 lchown()方法语法格式如下: ...

  6. RectTransform的localPosition与anchoredPosition(3D)的区别

    RectTransform继承自Transform,用于描述矩形的坐标(Position),尺寸(Size),锚点(anchor)和中心点(pivot)等信息,每个2D布局下的元素都会自动生成该组件. ...

  7. cobbler多机定制安装

    目录 cobbler多机定制安装 1. cobbler服务端部署 2. 客户端安装 3. 定制安装配置 4. 安装 client1开机 client2开机 cobbler多机定制安装 1. cobbl ...

  8. Redis 超详细总结笔记总

    作者 | 王爷科技 来源 | www.toutiao.com/i6713520017595433485 1. Redis 简介 Redis 是完全开源免费的,遵守 BSD 协议,是一个高性能的 key ...

  9. 【NOIP2013】火柴排队 题解(贪心+归并排序)

    前言:一道水题. ----------------------- 题目链接 题目大意:给出数列$a_i$和$b_i$,问使$\sum_{i=1}^n (a_i-b_i)^2$最小的最少操作次数. 首先 ...

  10. Go语言入门系列(五)之指针和结构体的使用

    Go语言入门系列前面的文章: Go语言入门系列(二)之基础语法总结 Go语言入门系列(三)之数组和切片 Go语言入门系列(四)之map的使用 1. 指针 如果你使用过C或C++,那你肯定对指针这个概念 ...