1.tf.nn :提供神经网络相关操作,包括卷积神经(conv),池化操作(pooling),归一化,loss,分类操作,embedding,RNN,Evaluation.

2.tf.layers:高层的神经网络,和卷积神经有关。

3.tf.contrib:tf.contrib.layers提供计算图中的网络层,正则化,摘要操作

附:tf.nn官方文档:

Activation Functions(激活函数)
tf.nn.relu(features, name=None) #max(features, 0)
tf.nn.relu6(features, name=None) #min(max(features, 0), 6)
tf.nn.softplus(features, name=None) #log(exp(features) + 1)
tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None) #计算dropout
tf.nn.bias_add(value, bias, name=None) #加偏置
tf.sigmoid(x, name=None) # 1/(1+exp(-x))
tf.tanh(x, name=None) #双曲正切曲线 (exp(x)-exp(-x))/(exp(x)+exp(-x))

Convolution(卷积运算)
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) #4D input
tf.nn.depthwise_conv2d(input, filter, strides, padding, name=None) #5D input
tf.nn.separable_conv2d(input, depthwise_filter, pointwise_filter, strides, padding, name=None) #执行一个深度卷积,分别作用于通道上,然后执行一个混合通道的点卷积

Pooling(池化)
tf.nn.avg_pool(value, ksize, strides, padding, name=None) #平均值池化
tf.nn.max_pool(value, ksize, strides, padding, name=None) #最大值池化
tf.nn.max_pool_with_argmax(input, ksize, strides, padding, Targmax=None, name=None) #放回最大值和扁平索引

Normalization(标准化)
tf.nn.l2_normalize(x, dim, epsilon=1e-12, name=None) #L2范式标准化
tf.nn.local_response_normalization(input, depth_radius=None, bias=None, alpha=None, beta=None, name=None) #计算局部数据标准化,每个元素被独立标准化
tf.nn.moments(x, axes, name=None) #平均值和方差

Losses(损失)
tf.nn.l2_loss(t,name=None) #sum(t^2)/2

Classification(分类)
tf.nn.sigmoid_cross_entropy_with_logits(logits, targets, name=None) #交叉熵
tf.nn.softmax(logits, name=None) #softmax[i, j] = exp(logits[i, j]) / sum_j(exp(logits[i, j]))
tf.nn.log_softmax(logits, name=None) #logsoftmax[i, j] = logits[i, j] - log(sum(exp(logits[i])))
tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) #计算logits和labels的softmax交叉熵

RNN
tf.nn.rnn(cell, inputs, initial_state=None, dtype=None, sequence_length=None, scope=None) #基于RNNCell类的实例cell建立循环神经网络
tf.nn.dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None) #基于RNNCell类的实例cell建立动态循环神经网络与一般rnn不同的是,该函数会根据输入动态展开返回(outputs,state)
tf.nn.state_saving_rnn(cell, inputs, state_saver, state_name, sequence_length=None, scope=None) #可储存调试状态的RNN网络
tf.nn.bidirectional_rnn(cell_fw, cell_bw, inputs,initial_state_fw=None, initial_state_bw=None, dtype=None,sequence_length=None, scope=None) #双向RNN, 返回一个3元组tuple (outputs, output_state_fw, output_state_bw)

Tensorflow--------tf.nn库的更多相关文章

  1. TensorFlow 学习(七) — 常用函数 api、tf.nn 库

    0. 四则运算 平方:tf.square(),开方:tf.sqrt() tf.add().tf.sub().tf.mul().tf.div().tf.mod().tf.abs().tf.neg() 1 ...

  2. [TensorFlow] tf.nn.softmax_cross_entropy_with_logits的用法

    在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化的值 ...

  3. TensorFlow——tf.contrib.layers库中的相关API

    在TensorFlow中封装好了一个高级库,tf.contrib.layers库封装了很多的函数,使用这个高级库来开发将会提高效率,卷积函数使用tf.contrib.layers.conv2d,池化函 ...

  4. tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例

    tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例 #!/usr/bin/env python # -*- coding: utf-8 ...

  5. 【TensorFlow基础】tf.add 和 tf.nn.bias_add 的区别

    1. tf.add(x,  y, name) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, ...

  6. TensorFlow函数教程:tf.nn.dropout

    tf.nn.dropout函数 tf.nn.dropout( x, keep_prob, noise_shape=None, seed=None, name=None ) 定义在:tensorflow ...

  7. 深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)

    1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数 ...

  8. Tensorflow学习笔记(2):tf.nn.dropout 与 tf.layers.dropout

    A quick glance through tensorflow/python/layers/core.py and tensorflow/python/ops/nn_ops.pyreveals t ...

  9. 第三节,TensorFlow 使用CNN实现手写数字识别(卷积函数tf.nn.convd介绍)

    上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即 ...

  10. 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法

    在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化 ...

随机推荐

  1. Python Flask后端异步处理(一)

    Flask是Python中有名的轻量级同步Web框架,但是在实际的开发中,可能会遇到需要长时间处理的任务,此时就需要使用异步的方式来实现,让长时间任务在后台运行,先将本次请求的相应状态返回给前端,不让 ...

  2. CNVD漏洞证书(2)

    第二张CNVD的原创漏洞证书. 关于证书申请可以看我之前写的这篇博客: https://www.cnblogs.com/Cl0ud/p/12720413.html 继续加油

  3. 实验吧 Once more

    0x1函数解析 ereg(): *用指定的模式搜索一个字符串中指定的字符串,如果匹配成功返回true,否则,则返回false. 搜索字母的字符是大小写敏感的. * 此函数存在两个漏洞: ①%00截断及 ...

  4. 降本增效利器!趣头条Spark Remote Shuffle Service最佳实践

    王振华,趣头条大数据总监,趣头条大数据负责人 曹佳清,趣头条大数据离线团队高级研发工程师,曾就职于饿了么大数据INF团队负责存储层和计算层组件研发,目前负责趣头条大数据计算层组件Spark的建设 范振 ...

  5. 第 3 篇 Scrum 冲刺博客

    每天举行会议 会议照片: 昨天已完成的工作与今天计划完成的工作及工作中遇到的困难: 成员姓名 昨天完成工作 今天计划完成的工作 工作中遇到的困难 蔡双浩 了解任务,并做相关学习和思考,创建基本的收藏夹 ...

  6. justify-content属性详解

    justify-content 定义了flexbox flexbox内的元素在主轴的方向上的对齐方式. 它可以设置以下几种对齐方式: 靠近一方 justify-content:center: /*fl ...

  7. 写一个为await自动加上catch的loader逐渐了解AST以及babel

    为什么要写这个loader 我们在日常开发中经常用到async await去请求接口,解决异步.可async await语法的缺点就是若await后的Promise抛出错误不能捕获,整段代码区就会卡住 ...

  8. Js 添加cookie,写入cookie到主域

    if (getCookie("content") != null && getCookie("content") != "" ...

  9. MySQL:判断逗号分隔的字符串中是否包含某个字符串 && 如何在一个以逗号分隔的列表中的一个字段中连接MySQL中的多对多关系中的数据

    需求:      sql语句中,判断以逗号分隔的字符串中是否包含某个特定字符串,类似于判断一个数组中是否包含某一个元素, 例如:判断 'a,b,c,d,e,f,g' 中是否包含 'a',sql语句如何 ...

  10. MySQL如何优雅的删除大表

    前言 删除表,大家下意识想到的命令可能是直接使用DROP TABLE "表名",这是初生牛犊的做法,因为当要删除的表达空间到几十G,甚至是几百G的表时候.这样一条命令下去,MySQ ...