1.tf.nn :提供神经网络相关操作,包括卷积神经(conv),池化操作(pooling),归一化,loss,分类操作,embedding,RNN,Evaluation.

2.tf.layers:高层的神经网络,和卷积神经有关。

3.tf.contrib:tf.contrib.layers提供计算图中的网络层,正则化,摘要操作

附:tf.nn官方文档:

Activation Functions(激活函数)
tf.nn.relu(features, name=None) #max(features, 0)
tf.nn.relu6(features, name=None) #min(max(features, 0), 6)
tf.nn.softplus(features, name=None) #log(exp(features) + 1)
tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None) #计算dropout
tf.nn.bias_add(value, bias, name=None) #加偏置
tf.sigmoid(x, name=None) # 1/(1+exp(-x))
tf.tanh(x, name=None) #双曲正切曲线 (exp(x)-exp(-x))/(exp(x)+exp(-x))

Convolution(卷积运算)
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) #4D input
tf.nn.depthwise_conv2d(input, filter, strides, padding, name=None) #5D input
tf.nn.separable_conv2d(input, depthwise_filter, pointwise_filter, strides, padding, name=None) #执行一个深度卷积,分别作用于通道上,然后执行一个混合通道的点卷积

Pooling(池化)
tf.nn.avg_pool(value, ksize, strides, padding, name=None) #平均值池化
tf.nn.max_pool(value, ksize, strides, padding, name=None) #最大值池化
tf.nn.max_pool_with_argmax(input, ksize, strides, padding, Targmax=None, name=None) #放回最大值和扁平索引

Normalization(标准化)
tf.nn.l2_normalize(x, dim, epsilon=1e-12, name=None) #L2范式标准化
tf.nn.local_response_normalization(input, depth_radius=None, bias=None, alpha=None, beta=None, name=None) #计算局部数据标准化,每个元素被独立标准化
tf.nn.moments(x, axes, name=None) #平均值和方差

Losses(损失)
tf.nn.l2_loss(t,name=None) #sum(t^2)/2

Classification(分类)
tf.nn.sigmoid_cross_entropy_with_logits(logits, targets, name=None) #交叉熵
tf.nn.softmax(logits, name=None) #softmax[i, j] = exp(logits[i, j]) / sum_j(exp(logits[i, j]))
tf.nn.log_softmax(logits, name=None) #logsoftmax[i, j] = logits[i, j] - log(sum(exp(logits[i])))
tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) #计算logits和labels的softmax交叉熵

RNN
tf.nn.rnn(cell, inputs, initial_state=None, dtype=None, sequence_length=None, scope=None) #基于RNNCell类的实例cell建立循环神经网络
tf.nn.dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None) #基于RNNCell类的实例cell建立动态循环神经网络与一般rnn不同的是,该函数会根据输入动态展开返回(outputs,state)
tf.nn.state_saving_rnn(cell, inputs, state_saver, state_name, sequence_length=None, scope=None) #可储存调试状态的RNN网络
tf.nn.bidirectional_rnn(cell_fw, cell_bw, inputs,initial_state_fw=None, initial_state_bw=None, dtype=None,sequence_length=None, scope=None) #双向RNN, 返回一个3元组tuple (outputs, output_state_fw, output_state_bw)

Tensorflow--------tf.nn库的更多相关文章

  1. TensorFlow 学习(七) — 常用函数 api、tf.nn 库

    0. 四则运算 平方:tf.square(),开方:tf.sqrt() tf.add().tf.sub().tf.mul().tf.div().tf.mod().tf.abs().tf.neg() 1 ...

  2. [TensorFlow] tf.nn.softmax_cross_entropy_with_logits的用法

    在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化的值 ...

  3. TensorFlow——tf.contrib.layers库中的相关API

    在TensorFlow中封装好了一个高级库,tf.contrib.layers库封装了很多的函数,使用这个高级库来开发将会提高效率,卷积函数使用tf.contrib.layers.conv2d,池化函 ...

  4. tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例

    tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例 #!/usr/bin/env python # -*- coding: utf-8 ...

  5. 【TensorFlow基础】tf.add 和 tf.nn.bias_add 的区别

    1. tf.add(x,  y, name) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, ...

  6. TensorFlow函数教程:tf.nn.dropout

    tf.nn.dropout函数 tf.nn.dropout( x, keep_prob, noise_shape=None, seed=None, name=None ) 定义在:tensorflow ...

  7. 深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)

    1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数 ...

  8. Tensorflow学习笔记(2):tf.nn.dropout 与 tf.layers.dropout

    A quick glance through tensorflow/python/layers/core.py and tensorflow/python/ops/nn_ops.pyreveals t ...

  9. 第三节,TensorFlow 使用CNN实现手写数字识别(卷积函数tf.nn.convd介绍)

    上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即 ...

  10. 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法

    在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化 ...

随机推荐

  1. 谈谈传说中的redo log是什么?有啥用?

    目录 一.引出 redo log 的作用 二.思考一个问题: 三.redo log block 四.redo log buffer 五.redo log的刷盘时机 六.推荐参数 七.redo log ...

  2. 剑指offer二刷——数组专题——数组中出现次数超过一半的数字

    题目描述 数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字.例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}.由于数字2在数组中出现了5次,超过数组长度的一半,因此输出2. ...

  3. caffe源码 全连接层

    图示全连接层 如上图所示,该全链接层输入n * 4,输出为n * 2,n为batch 该层有两个参数W和B,W为系数,B为偏置项 该层的函数为F(x) = W*x + B,则W为4 * 2的矩阵,B ...

  4. jwt与springcloud联用

    图片来源与博客:https://www.jianshu.com/p/99a458c62aa4 分布式权限管理参考:https://blog.csdn.net/qq_36236890/article/d ...

  5. 跨站点脚本编制 - SpringBoot配置XSS过滤器(基于mica-xss)

    1. 简介   XSS,即跨站脚本编制,英文为Cross Site Scripting.为了和CSS区分,命名为XSS.   XSS是最普遍的Web应用安全漏洞.这类漏洞能够使得攻击者嵌入恶意脚本代码 ...

  6. ubuntu 开启关闭mysql服务

    etc/init.d/mysql restart //重启 etc/init.d/mysql start //开启 etc/init.d/mysql stop //停止

  7. Kafka Connect使用入门-Mysql数据导入到ElasticSearch

    1.Kafka Connect Connect是Kafka的一部分,它为在Kafka和外部存储系统之间移动数据提供了一种可靠且伸缩的方式,它为连接器插件提供了一组API和一个运行时-Connect负责 ...

  8. react第六单元(react组件通信-父子组件通信-子父组件通信-跨级组件的传参方式-context方式的传参)

    第六单元(react组件通信-父子组件通信-子父组件通信-跨级组件的传参方式-context方式的传参) #课程目标 1.梳理react组件之间的关系 2.掌握父子传值的方法 3.掌握子父传值的方法 ...

  9. 第三章 Nacos Discovery--服务治理

    之前我讲过 Nacos文章 的内容,想要深入了解的 朋友的话,可以去看看 ,我们继续承接上篇讲下去 --> 第二章 : 微服务环境搭建 3.1 服务治理介绍 先来思考一个问题 通过上一章的操作, ...

  10. Java篇:Docker的介绍安装 和常用命令

    文章目录 为什么 出现docker Docker的简介 容器(Container) 镜像(Image) 仓库(Repository) Docker的安装 查看容器 删除镜像 删除容器 部署应用 以my ...