Link

据说这是一道论文题????。具体论文好像是 集训队论文《根号算法——不只是分块》

根号分治的裸题。

首先我们考虑暴力怎么打。

  • 先预处理出每个模数的答案,之后再 O(1) 的回答,修改预处理O(\(n^2\))
  • 每次询问直接暴力统计,修改是 O (1) 的,但回答是O(\(n^2\)) 的。

这两种写法都不能通过此题。

那我们想办法把询问和修改的复杂度均摊一下。

对于模数比较少的数,我们直接暴力统计的话,会涉及到的数比较多,这样时间复杂度就上去了,所以我们采用方法一,来减少询问的复杂度。

对于模数比较大·的数,我们就可以直接暴力回答,因为涉及到的数不会太多,这样我们的复杂度是完全可以接受的。

我们一般把这个阈值设为 \(\sqrt{n}\) ,比这个数大的,我们认为他是比较大的模数,直接暴力统计答案的询问最多涉及到 \({n \over {\sqrt n}} = \sqrt n\) 个数。

总的复杂度为 \(O((n+m)\sqrt n)\)

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
#define LL long long
int n,m,x,y,maxn,T,a[150010],f[400][400], ans;
inline int read()
{
int s = 0,w = 1; char ch = getchar();
while(ch < '0' || ch > '9'){if(ch == '-') w = -1; ch = getchar();}
while(ch >= '0' && ch <= '9'){s = s * 10 + ch - '0'; ch = getchar();}
return s * w;
}
int main(){
n = read(); m = read(); T = sqrt(n);
for(int i = 1; i <= n; i++)
{
a[i] = read();
for(int p = 1; p <= T; p++)//模数比较小的数,先预处理出答案来
{
f[p][i % p] += a[i];
}
}
for(int i = 1; i <= m; i++)
{
char opt; cin>>opt;
x = read(); y = read();
if(opt == 'A')
{
if(x <= T) printf("%d\n",f[x][y]);//模数小的数可以直接回答
else
{
ans = 0;
for(int j = y; j <= n; j += x)//模数比较大的数暴力统计
{
ans += a[j];
}
printf("%d\n",ans);
}
}
else if(opt == 'C')
{
for(int p = 1; p <= T; p++)
{
f[p][x % p] += y - a[x];//增量法对预处理的值修改
}
a[x] = y;
}
}
return 0;
}

P 3396 哈希冲突 根号分治的更多相关文章

  1. luogu 3396 哈希冲突 奇怪的根号

    这个题嘛开始一看实在想不出来有什么数据结构/算法可以乱搞,于是果断写了个朴素n方暴力,然后就发现luogu竟然有91分 这数据啊,也是醉了.. 想着优化优化能不能暴力卡过最后一个T掉的点,然鹅发现无耶 ...

  2. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  3. P3396 哈希冲突

    很好的根号算法(这种思想好像叫根号分治?) 首先,暴力是Ο(n2)的 考虑预处理: for(p=1;p<=n;p++) //枚举模数 ans[p][i%p]+=value[i]; 看似很好但还是 ...

  4. 一次电话Java面试的问题总结(JDK8新特性、哈希冲突、HashMap原理、线程安全、Linux查询命令、Hadoop节点)

    面试涉及问题含有: Java JDK8新特性 集合(哈希冲突.HashMap的原理.自动排序的集合TreeSet) 多线程安全问题 String和StringBuffer JVM 原理.运行流程.内部 ...

  5. Codeforces 1039D You Are Given a Tree [根号分治,整体二分,贪心]

    洛谷 Codeforces 根号分治真是妙啊. 思路 考虑对于单独的一个\(k\)如何计算答案. 与"赛道修建"非常相似,但那题要求边,这题要求点,所以更加简单. 在每一个点贪心地 ...

  6. BZOJ.4320.[ShangHai2006]Homework(根号分治 分块)

    BZOJ \(\mathbb{mod}\)一个数\(y\)的最小值,可以考虑枚举剩余系,也就是枚举区间\([0,y),[y,2y),[2y,3y)...\)中的最小值(求后缀最小值也一样)更新答案,复 ...

  7. CF1039E Summer Oenothera Exhibition 贪心、根号分治、倍增、ST表

    传送门 感谢这一篇博客的指导(Orzwxh) $PS$:默认数组下标为$1$到$N$ 首先很明显的贪心:每一次都选择尽可能长的区间 不妨设$d_i$表示在取当前$K$的情况下,左端点为$i$的所有满足 ...

  8. BZOJ3351: [ioi2009]Regions(根号分治)

    题意 题目链接 Sol 很神仙的题 我们考虑询问(a, b)(a是b的祖先),直接对b根号分治 如果b的出现次数\(< \sqrt{n}\),我们可以直接对每个b记录下与它有关的询问,这样每个询 ...

  9. CF1039E Summer Oenothera Exhibition 根号分治,LCT,ST表

    CF1039E Summer Oenothera Exhibition LG传送门 根号分治好题. 可以先看我的根号分治总结. 题意就是给出长度为\(n\)的区间和\(q\)组询问以及一个\(w\), ...

随机推荐

  1. linux 下切换Python版本(某用户,共存,替换)

    当你安装 Debian Linux 时,安装过程有可能同时为你提供多个可用的 Python 版本,因此系统中会存在多个 Python 的可执行二进制文件.你可以按照以下方法使用 ls 命令来查看你的系 ...

  2. 沈阳做假证z

    沈阳做假证[电/薇:187ヘ1184ヘ0909同号]办各类证件-办毕业证-办离婚证,办学位证书,办硕士毕业证,办理文凭学历,办资格证,办房产证不. 这是一个简单的取最大值程序,可以用于处理 i32 数 ...

  3. 【原】通过Jenkin传值进Android代码

    1) Jenkin中用-Pxxxx = yyyy来传值进gradle 2) 在AndroidManifest.xml中定义占位符: <meta-data android:name="X ...

  4. nginx高可用

    15.1. 传统的高可用思路 tomcat的高可用的思路,是在tomcat集群前面加一层负载服务nginx.如下图 这种做法,解决了tomcat的高可用问题.但是引入了前面的负载机器的高可用问题(Ng ...

  5. Echars 参数说明

    theme = { // 全图默认背景 // backgroundColor: 'rgba(0,0,0,0)', // 默认色板 color: ['#ff7f50','#87cefa','#da70d ...

  6. 通过例子讲解Spring Batch入门,优秀的批处理框架

    1 前言 欢迎访问南瓜慢说 www.pkslow.com获取更多精彩文章! Spring相关文章:Springboot-Cloud相关 Spring Batch是一个轻量级的.完善的批处理框架,作为S ...

  7. 面向对象--有参数的__init__方法

    有参数的__init__()方法 class Hero(object): """定义了一个英雄类,可以移动和攻击""" def __init ...

  8. linux系统漏洞扫描工具lynis

    lynis 是一款运行在 Unix/Linux 平台上的基于主机的.开源的安全审计软件.Lynis是针对Unix/Linux的安全检查工具,可以发现潜在的安全威胁.这个工具覆盖可疑文件监测.漏洞.恶意 ...

  9. Oracle闪回flashback

    参考资料:Using Oracle Flashback Technology Oracle 11g的新特性闪回操作 闪回查询 闪回查询 闪回版本查询 闪回事务查询 闪回数据 闪回表 闪回删除 闪回数据 ...

  10. vue-element-admin实战 | 第二篇: 最小改动接入后台实现根据权限动态加载菜单

    一. 前言 本篇基于 有来商城 youlai-mall微服务项目,通过对vue-element-admin的权限菜单模块理解个性定制其后台接口,实现对vue-element-admin工程几乎不做改动 ...