【非原创】LightOj 1248 - Dice (III)【几何分布+期望】
学习博客:戳这里
题意:有一个 n 面的骰子,问至少看到所有的面一次的所需 掷骰子 的 次数的期望;
第一个面第一次出现的概率是p1 n/n;
第二个面第一次出现的概率是p2 (n-1)/n;
第三个面第一次出现的概率是p3 (n-2)/n;
...
第 i 个面第一次出现的概率是pi (n-i+1)/n;
先看一下什么是几何分布:
几何分布: 在第n次伯努利试验中,试验 k 次才得到第一次成功的机率为p。详细的说是:前k-1次皆失败,第k次成功的概率为p。
几何分布的期望E(X) = 1/p;
所以所求期望为∑1/pi = n * (1+1/2+1/3+1/4+1/5+...+1/n);
【非原创】LightOj 1248 - Dice (III)【几何分布+期望】的更多相关文章
- LightOJ 1248 Dice (III) (期望DP / 几何分布)
题目链接:LightOJ - 1248 Description Given a dice with n sides, you have to find the expected number of t ...
- LightOJ - 1248 Dice (III) —— 期望
题目链接:https://vjudge.net/problem/LightOJ-1248 1248 - Dice (III) PDF (English) Statistics Forum Tim ...
- LightOj 1248 - Dice (III)(几何分布+期望)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1248 题意:有一个 n 面的骰子,问至少看到所有的面一次的所需 掷骰子 的 次数的期望 ...
- LightOJ 1248 Dice (III) (水题,期望DP)
题意:给出一个n面的色子,问看到每个面的投掷次数期望是多少. 析:这个题很水啊,就是他解释样例解释的太...我鄙视他,,,,, dp[i] 表示 已经看到 i 面的期望是多少,然后两种选择一种是看到新 ...
- LightOJ 1248 Dice (III) 概率
Description Given a dice with n sides, you have to find the expected number of times you have to thr ...
- LightOJ 1248 Dice (III)
期望,$dp$. 设$dp[i]$表示当前已经出现过$i$个数字的期望次数.在这种状态下,如果再投一次,会出现两种可能,即出现了$i+1$个数字以及还是$i$个数字. 因此 $dp[i]=dp[i]* ...
- 1248 - Dice (III)
1248 - Dice (III) PDF (English) Statistics Forum Time Limit: 1 second(s) Memory Limit: 32 MB Given ...
- [LOJ 1248] Dice (III)
G - Dice (III) Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu Descri ...
- lightoj 1248-G - Dice (III) (概率dp)
题意:给你n个面的骰子,问扔出所有面的期望次数. 虽然这题挺简单的但还是要提一下.这题题目给出了解法. E(m)表示得到m个不同面的期望次数. E(m+1)=[((n-m)/n)*E(m)+1]+(m ...
随机推荐
- 创建Django REST framework工程
1.创建工程虚拟环境 2.创建工程目录和调整目录结构: 创建Django的项目 创建docs 用于存放一些说明文档资料 创建scripts 用于存放管理脚本文件 创建logs 用于存在日志 在与项目同 ...
- 安装JDK与卸载JDK教程
卸载JDK 删除JDK的安装目录,也就是删除了主程序(通过环境变量可以找到) 删除java_home的环境变量 删除环境变量path中与java_home相关的 通过DOS命令cmd来检验是否卸载成功 ...
- yml文件中${DB_HOST:localhost}的含义
引自:https://blog.csdn.net/chen462488588/article/details/109057342 今天学习eladmin项目中看到application-dev.yml ...
- 一文告诉你Java日期时间API到底有多烂
前言 你好,我是A哥(YourBatman). 好看的代码,千篇一律!难看的代码,卧槽卧槽~其实没有什么代码是"史上最烂"的,要有也只有"史上更烂". 日期是商 ...
- Vim中的swp文件,在vim非正常退出时,再次编辑会出问题
vim中的swp即swap文件,在编辑文件时产生,它是隐藏文件,如果原文件名是data,那么swp文件名就是.data.swp.如果文件正常退出,则此文件自动删除.以下两种情况不会删除swp文件: V ...
- py, pyc, pyw, pyo, pyd Compiled Python File (.pyc) 和Java或.NET相比,Python的Virtual Machine距离真实机器的距离更远
https://my.oschina.net/renwofei423/blog/17404 1. PyCodeObject与Pyc文件 通常认为,Python是一种解释性的语言,但是这种说法 ...
- DDD领域驱动设计:仓储
1 前置阅读 在阅读本文章之前,你可以先阅读: 什么是DDD DDD的实体.值对象.聚合根的基类和接口:设计与实现 2 什么是仓储? 仓储封装了基础设施来提供查询和持久化聚合操作. 它们集中提供常见的 ...
- 「NOIP2009」最优贸易
「NOIP2009」最优贸易 「NOIP2009」最优贸易内存限制:128 MiB时间限制:1000 ms 题目描述C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意 ...
- Excel 多种粘贴方式
一.粘贴为数值. 这个功能是选择性粘贴中最常用的功能.因为excel主要功能之一就是用来做数据分析,把其他格式粘贴为数据格式才能进行数据运算,把带有公式的计算结果粘贴为数值格式可以使复制后的内容不会变 ...
- 最新Ceph L版与openstack Pike对接
安装Ceph luminous 实验环境 三台服务器,每台服务器都有4块硬盘,每台服务器都将自己的第一块硬盘作为系统盘,剩下的做ceph 一.在所有服务器上操作 #使用阿里源 yum inst ...