学习博客:戳这里

题意:有一个 n 面的骰子,问至少看到所有的面一次的所需 掷骰子 的 次数的期望;

第一个面第一次出现的概率是p1 n/n;

第二个面第一次出现的概率是p2 (n-1)/n;

第三个面第一次出现的概率是p3 (n-2)/n;

...

第 i 个面第一次出现的概率是pi (n-i+1)/n;

先看一下什么是几何分布:

几何分布: 在第n次伯努利试验中,试验 次才得到第一次成功的机率为p。详细的说是:前k-1次皆失败,第k次成功的概率为p。

几何分布的期望E(X) = 1/p;

所以所求期望为∑1/pi = n * (1+1/2+1/3+1/4+1/5+...+1/n);

【非原创】LightOj 1248 - Dice (III)【几何分布+期望】的更多相关文章

  1. LightOJ 1248 Dice (III) (期望DP / 几何分布)

    题目链接:LightOJ - 1248 Description Given a dice with n sides, you have to find the expected number of t ...

  2. LightOJ - 1248 Dice (III) —— 期望

    题目链接:https://vjudge.net/problem/LightOJ-1248 1248 - Dice (III)    PDF (English) Statistics Forum Tim ...

  3. LightOj 1248 - Dice (III)(几何分布+期望)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1248 题意:有一个 n 面的骰子,问至少看到所有的面一次的所需 掷骰子 的 次数的期望 ...

  4. LightOJ 1248 Dice (III) (水题,期望DP)

    题意:给出一个n面的色子,问看到每个面的投掷次数期望是多少. 析:这个题很水啊,就是他解释样例解释的太...我鄙视他,,,,, dp[i] 表示 已经看到 i 面的期望是多少,然后两种选择一种是看到新 ...

  5. LightOJ 1248 Dice (III) 概率

    Description Given a dice with n sides, you have to find the expected number of times you have to thr ...

  6. LightOJ 1248 Dice (III)

    期望,$dp$. 设$dp[i]$表示当前已经出现过$i$个数字的期望次数.在这种状态下,如果再投一次,会出现两种可能,即出现了$i+1$个数字以及还是$i$个数字. 因此 $dp[i]=dp[i]* ...

  7. 1248 - Dice (III)

    1248 - Dice (III)   PDF (English) Statistics Forum Time Limit: 1 second(s) Memory Limit: 32 MB Given ...

  8. [LOJ 1248] Dice (III)

    G - Dice (III) Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Descri ...

  9. lightoj 1248-G - Dice (III) (概率dp)

    题意:给你n个面的骰子,问扔出所有面的期望次数. 虽然这题挺简单的但还是要提一下.这题题目给出了解法. E(m)表示得到m个不同面的期望次数. E(m+1)=[((n-m)/n)*E(m)+1]+(m ...

随机推荐

  1. kafka(二)基本使用

    一.Kafka线上集群部署方案 既然是集群,那必然就要有多个Kafka节点机器,因为只有单台机器构成的kafka伪集群只能用于日常测试之用,根本无法满足实际的线上生产需求. 操作系统: kafka由S ...

  2. MySQL数据库基础知识及优化

    MySQL数据库基础知识及优化必会的知识点,你掌握了多少? 推荐阅读: 这些必会的计算机网络知识点你都掌握了吗 关于数据库事务和锁的必会知识点,你掌握了多少? 关于数据库索引,必须掌握的知识点 目录 ...

  3. PAT练习num3-跟奥巴马一起学编程

    美国总统奥巴马不仅呼吁所有人都学习编程,甚至以身作则编写代码,成为美国历史上首位编写计算机代码的总统.2014 年底,为庆祝"计算机科学教育周"正式启动,奥巴马编写了很简单的计算机 ...

  4. Java中,那些关于String和字符串常量池你不得不知道的东西

    老套的笔试题 在一些老套的笔试题中,会要你判断s1==s2为false还是true,s1.equals(s2)为false还是true. String s1 = new String("xy ...

  5. 响应式编程库RxJava初探

    引子 在读 Hystrix 源码时,发现一些奇特的写法.稍作搜索,知道使用了最新流行的响应式编程库RxJava.那么响应式编程究竟是怎样的呢? 本文对响应式编程及 RxJava 库作一个初步的探索. ...

  6. 二本学生拿到腾讯大厂offer的成长记录

    本人迈莫,是在20年以春招实习生的身份进入鹅厂,经过重重波折,最终成为鹅仔一份子.接下来我会以我亲生经历为例,分享一下普通大学的学生也是可以进去大厂,拭目以待!!! 初入大学 惨遭毒打 时间倒回到17 ...

  7. 前端面试之JavaScript中this的指向【待完善!】

    JavaScript中this的指向问题! 另一个特殊的对象是 this,它在标准函数和箭头函数中有不同的行为. 在标准函数中, this 引用的是把函数当成方法调用的上下文对象,这时候通常称其为 t ...

  8. UT /SIT/ UAT

    UT /SIT/ UAT - 云+社区 - 腾讯云 https://cloud.tencent.com/developer/article/1541268 我们公司只有测试环境--准生产环境--生产环 ...

  9. 游标 深度分页 deep paging

    Solr Deep Paging(solr 深分页) - ickes的专栏 - CSDN博客 https://blog.csdn.net/xl_ickes/article/details/427725 ...

  10. 【DB宝36】使用Docker分分钟搭建漂亮的prometheus+grafana监控

    目录 一.部署Prometheus+grafana环境 1.1.下载Prometheus+grafana镜像 1.2.创建镜像 1.3.浏览器访问 二.监控Linux主机 2.1.在被监控主机上部署n ...