RMQ(Range Minimum/Maximum Query)区间最值查询,即给出长度为n的数组A,以及m组询问s、t(s<=t<=n),返回区间[s,t]中的最值。

基于线段树的方法实现的话,建树O(n),查询O(logn),相比ST,适合用于n更大,m较小的情况。

void built(int k, int l, int r)
{
if (l==r) t[k] = a[l]; //到叶子上,则赋值
else {
built(k*2+1, l, (l+r)/2); //左儿子
built(k*2+2, (l+r)/2, r); //右儿子
t[k] = min(t[k*2+1], t[k*2+2]); //回溯赋值
}
}
void update(int k, int a)
{
//叶子节点
k += n-1;
t[k] = a;
//向上更新
while (k>0) {
k = (k-1)/2;
t[k] = min(t[k*2+1], t[k*2+2]);
}
}
int query(int a, int b, int k, int l, int r) //查询区间[a,b], 当前查询结点的位置为k, 所表示的区间为[l,r],默认k为根结点
{
if (r<=a||b<=l) return INF; //当前区间与所查询区间无交集,返回一个不影响答案的值
if (a<=l&&r<=b) return t[k]; //当前区间包含于所查询区间,直接返回当前区间的最值就好了
else {
int vl = query(a, b, k*2+1, l, (l+r)/2); //查询左儿子
int vr = query(a, b, k*2+1, (l+r)/2, r); //查询右儿子
return min(vl, vr);
}
}

https://blog.csdn.net/zearot/article/details/48299459

https://blog.csdn.net/lian233/article/details/58250641

基于线段树的RMQ的更多相关文章

  1. 51nod1174【基于线段树的RMQ】

    很基础啊~ #include <bits/stdc++.h> using namespace std; typedef long long LL; const int INF=-0x3f3 ...

  2. 线段树+RMQ问题第二弹

    线段树+RMQ问题第二弹 上篇文章讲到了基于Sparse Table 解决 RMQ 问题,不知道大家还有没有印象,今天我们会从线段树的方法对 RMQ 问题再一次讨论. 正式介绍今天解决 RMQ 问题的 ...

  3. POJ 3368 Frequent values 线段树与RMQ解法

    题意:给出n个数的非递减序列,进行q次查询.每次查询给出两个数a,b,求出第a个数到第b个数之间数字的最大频数. 如序列:-1 -1 1 1 1 1 2 2 3 第2个数到第5个数之间出现次数最多的是 ...

  4. POJ-3264 Balanced Lineup(区间最值,线段树,RMQ)

    http://poj.org/problem?id=3264 Time Limit: 5000MS     Memory Limit: 65536K Description For the daily ...

  5. poj 3264 Balanced Lineup(线段树、RMQ)

    题目链接: http://poj.org/problem?id=3264 思路分析: 典型的区间统计问题,要求求出某段区间中的极值,可以使用线段树求解. 在线段树结点中存储区间中的最小值与最大值:查询 ...

  6. tyvj 1038 忠诚 区间最小值 线段树或者rmq

    P1038 忠诚 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 老管家是一个聪明能干的人.他为财主工作了整整10年,财主为了让自已账目更加清楚.要求管家每天 ...

  7. Codeforces Round #278 (Div. 1) Strip (线段树 二分 RMQ DP)

    Strip time limit per test 1 second memory limit per test 256 megabytes input standard input output s ...

  8. V-Parenthesis 前缀+ZKW线段树或RMQ

    Bobo has a balanced parenthesis sequence P=p 1 p 2…p n of length n and q questions. The i-th questio ...

  9. POJ - 3264 Balanced Lineup(线段树或RMQ)

    题意:求区间最大值-最小值. 分析: 1.线段树 #include<cstdio> #include<cstring> #include<cstdlib> #inc ...

随机推荐

  1. 多年经验,教你写出最惊艳的 Markdown 高级用法

    点赞再看,养成习惯,微信搜索[高级前端进阶]关注我. 本文 GitHub https://github.com/yygmind 已收录,有一线大厂面试完整考点和系列文章,欢迎 Star. 最近在学习的 ...

  2. Face_to_object_design

    二.实例 掷骰子游戏:三粒骰子,掷两次,比较两次的结果. 1.提炼 提炼对象:三粒骰子.游戏 提炼对象的属性和功能:掷骰子.比较点数 骰子: 属性:点数 功能:随机获取一个1~6之间的整数值. 游戏: ...

  3. windows端口占用

    原文链接http://zhhll.icu/2020/04/08/windows/windows%E4%B9%8B%E7%AB%AF%E5%8F%A3%E5%8D%A0%E7%94%A8/ 1.查看当前 ...

  4. Mac上最好用的软件集合,没有之一

    前言 题主从 windows 系统换成 macOS 系统已经4年多了.对于没有用过 Mac 电脑的人来说,可能无法理解 Mac 好用在哪里.不过对于一个用过 Mac 的开发者来说,从 windows ...

  5. SqlLoad的简单使用

    sqlload的简单使用: 能实现: 快速导入大量数据 1.先安装oracle 客户端机器.有点大,600M+, 2.安装时选择管理员安装(1.1g) 3.第三步的时候我的出错了.说是环境变量校验不通 ...

  6. #2020征文-开发板# 用鸿蒙开发AI应用(五)HDF 驱动补光灯

    目录: 前言 硬件准备 HDF 驱动开发 总结 前言上一篇,我们在鸿蒙上运行了第一个程序,这一篇我们来编写一个驱动开启摄像头的红外补光灯,顺便熟悉一下鸿蒙上的 HDF 驱动开发. 硬件准备先查一下原理 ...

  7. selenium自动化 | 通过获取cookies登录

    >>>登录百度<<<#获取登录成功后的cookies def get_cookies(): driver.get(bd_url) driver.implicitly ...

  8. Java基础学习总结笔记

    Java基础 Java常用内存区域 栈内存空间:存储引用堆内存空间的地址 堆内存空间:保存每个对象的具体属性内容 全局数据区:保存static类型的属性 全局代码区:保存所有的方法定义 修饰符 权限修 ...

  9. SpringBoot 导入插件报错 Cannot resolve plugin org.springframework.boot:spring-boot-maven-plugin:2.4.1

    使用 maven 导入插件的时候报错: Cannot resolve plugin org.springframework.boot:spring-boot-maven-plugin:2.4.1 我的 ...

  10. 【EXP】WINDOWS下如何导出

    有些时候需要在windows下通过远程来导出数据 那么windows下怎么导出呢 例子: exp hr/hr@192.168.1.222:1521/zhang file=d:backup.dmp lo ...