基于线段树的RMQ
RMQ(Range Minimum/Maximum Query)区间最值查询,即给出长度为n的数组A,以及m组询问s、t(s<=t<=n),返回区间[s,t]中的最值。
基于线段树的方法实现的话,建树O(n),查询O(logn),相比ST,适合用于n更大,m较小的情况。
void built(int k, int l, int r)
{
if (l==r) t[k] = a[l]; //到叶子上,则赋值
else {
built(k*2+1, l, (l+r)/2); //左儿子
built(k*2+2, (l+r)/2, r); //右儿子
t[k] = min(t[k*2+1], t[k*2+2]); //回溯赋值
}
}
void update(int k, int a)
{
//叶子节点
k += n-1;
t[k] = a;
//向上更新
while (k>0) {
k = (k-1)/2;
t[k] = min(t[k*2+1], t[k*2+2]);
}
}
int query(int a, int b, int k, int l, int r) //查询区间[a,b], 当前查询结点的位置为k, 所表示的区间为[l,r],默认k为根结点
{
if (r<=a||b<=l) return INF; //当前区间与所查询区间无交集,返回一个不影响答案的值
if (a<=l&&r<=b) return t[k]; //当前区间包含于所查询区间,直接返回当前区间的最值就好了
else {
int vl = query(a, b, k*2+1, l, (l+r)/2); //查询左儿子
int vr = query(a, b, k*2+1, (l+r)/2, r); //查询右儿子
return min(vl, vr);
}
}
https://blog.csdn.net/zearot/article/details/48299459
https://blog.csdn.net/lian233/article/details/58250641
基于线段树的RMQ的更多相关文章
- 51nod1174【基于线段树的RMQ】
很基础啊~ #include <bits/stdc++.h> using namespace std; typedef long long LL; const int INF=-0x3f3 ...
- 线段树+RMQ问题第二弹
线段树+RMQ问题第二弹 上篇文章讲到了基于Sparse Table 解决 RMQ 问题,不知道大家还有没有印象,今天我们会从线段树的方法对 RMQ 问题再一次讨论. 正式介绍今天解决 RMQ 问题的 ...
- POJ 3368 Frequent values 线段树与RMQ解法
题意:给出n个数的非递减序列,进行q次查询.每次查询给出两个数a,b,求出第a个数到第b个数之间数字的最大频数. 如序列:-1 -1 1 1 1 1 2 2 3 第2个数到第5个数之间出现次数最多的是 ...
- POJ-3264 Balanced Lineup(区间最值,线段树,RMQ)
http://poj.org/problem?id=3264 Time Limit: 5000MS Memory Limit: 65536K Description For the daily ...
- poj 3264 Balanced Lineup(线段树、RMQ)
题目链接: http://poj.org/problem?id=3264 思路分析: 典型的区间统计问题,要求求出某段区间中的极值,可以使用线段树求解. 在线段树结点中存储区间中的最小值与最大值:查询 ...
- tyvj 1038 忠诚 区间最小值 线段树或者rmq
P1038 忠诚 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 老管家是一个聪明能干的人.他为财主工作了整整10年,财主为了让自已账目更加清楚.要求管家每天 ...
- Codeforces Round #278 (Div. 1) Strip (线段树 二分 RMQ DP)
Strip time limit per test 1 second memory limit per test 256 megabytes input standard input output s ...
- V-Parenthesis 前缀+ZKW线段树或RMQ
Bobo has a balanced parenthesis sequence P=p 1 p 2…p n of length n and q questions. The i-th questio ...
- POJ - 3264 Balanced Lineup(线段树或RMQ)
题意:求区间最大值-最小值. 分析: 1.线段树 #include<cstdio> #include<cstring> #include<cstdlib> #inc ...
随机推荐
- 如何限制电脑访问网址—使用Host限制访问网址
如何限制电脑访问网址-使用Host限制访问网址 1. 打开C:\Windows\System32\drivers\etc 2. 打开hosts 3. 修改host内容,如下示例 127.0.0.1 ...
- openstack octavia的实现与分析(一)openstack负载均衡的现状与发展以及lvs,Nginx,Haproxy三种负载均衡机制的基本架构和对比
[负载均衡] 大量用户发起请求的情况下,服务器负载过高,导致部分请求无法被响应或者及时响应. 负载均衡根据一定的算法将请求分发到不同的后端,保证所有的请求都可以被正常的下发并返回. [主流实现-LVS ...
- Nginx 安装与配置教程
标签: Nginx Linux Windows 配置 描述: Ubuntu 下以及 Windows 下 Nginx 的配置:配置详解:有关 Nginx 如何配置 Nginx 在 Ubuntu 下的安装 ...
- VmwareTools显示灰色无法安装
VMware不安装VMware Tools无法全屏,然后实机之间不能传输文件等. 安装Vmware Tools显示是灰色的,详细解决方案如下 打开虚拟机设置,CD/DVD 选择ISO映像文件 在Vmw ...
- 有了链路日志增强,排查Bug小意思啦!
在工作中,相信大家最怕的一件事就是听到有人在工作群艾特你:某某功能报错啦... 然后你就得屁颠屁颠的去服务器看日志,日志量少还好点,多的话找起来太麻烦了.不太容易直接定位到关键地方. 东找找西找找,好 ...
- 【Spring】Spring中的Bean - 4、Bean的生命周期
Bean的生命周期 简单记录-Java EE企业级应用开发教程(Spring+Spring MVC+MyBatis)-Spring中的Bean 了解Spring中Bean的生命周期有何意义? 了解Sp ...
- YYDS: Webpack Plugin开发
目录 导读 一.cdn常规使用 二.开发一个webpack plugin 三.cdn优化插件实现 1.创建一个具名 JavaScript 函数(使用ES6的class实现) 2.在它的原型上定义 ap ...
- LeetCode454. 四数相加 II
题目 给定四个包含整数的数组列表 A , B , C , D ,计算有多少个元组 (i, j, k, l) ,使得 A[i] + B[j] + C[k] + D[l] = 0. 分析 关键是如何想到用 ...
- [Usaco2007 Dec]Building Roads 修建道路
题目描述 Farmer John最近得到了一些新的农场,他想新修一些道路使得他的所有农场可以经过原有的或是新修的道路互达(也就是说,从任一个农场都可以经过一些首尾相连道路到达剩下的所有农场).有些农场 ...
- 24V降压3.3V芯片,低压降线性稳压器
PW6206系列是一款高精度,高输入电压,低静态电流,高速,低压降线性稳压器具有高纹波抑制.在VOUT=5V&VIN=7V时,输入电压高达40V,负载电流高达300mA,采用BCD工艺制造.P ...