[打基础]luogu2181对角线——计数原理
啦啦啦我ysw又回来啦!之后大概会准备打acm,暑假尽量复习复习,因为已经快两年没碰oi了,最多也就高三noip前学弟学妹出题讲题,所以从这一篇blog开始大概会有一系列“打基础”的blog,既是复习也是重新学一遍叭~高中的时候学得就不太扎实
题意:对于一个任何三条对角线不会交于同一点的凸$n$边形,问对角线交点个数,$n\leq 10^5$。
例如$n=6$的情形下答案为15

似乎我们可以随意给一个端点编号为1,按照逆时针/顺时针顺序依次编号$1,2,3……n$,这样一来我们可以先只考虑以点1为其中一个端点出发的所有对角线(图中红线)对应的交点,这个问题似乎好处理了许多,因为如果另一条对角线要和它有交点(蓝线)当且仅当蓝线的两个端点在红线的两侧!(嗯!这不就是计算几何里面判断直线是否有交点的方法嘛!?)
于是我们想,对于编号为$k$的点,1~k内从点2到点$k-1$是可以作为其中一个起点的,一共是$k-1-2+1=k-2$个点,同样的另一侧从$k+1$到$n$可以作为对角线另一点,一共是$n-(k+1)+1=n-k$个点
乘法原理得到$(k-2)(n-k)$,接着只要对所有情形进行求和就行了,对于$k$来说最小取到3(2的话就不是对角线了),最大取到$n-1$
所以对于以任意一点为端点的所有对角线的交点便是:$m=\sum_{k=3}^{n-1}(n-k)(k-2)$,对$n$个点进行同样的操作就得到$nm$,而注意到如果这样写,每个交点对应两条对角线的四个端点都作为了一次起点,也就是说每个交点都被算了四次,所以我们要的答案应该是$ans=\frac{1}{4}nm$,式子推出来啦!
接着就可以编程求解了…首先整个问题的时间复杂度是$O(n)$,轻轻松松通过,不过我们注意到对应答案的上界是$O(n^3)$级别的也就是$10^{15}$级别的差不多,一开始我只开了个long long交上去然后挂了两个点…后面改成unsigned long long 就过了…emm好吧
话说回来我们再回头看看那个和式$m=\sum_{k=3}^{n-1}(n-k)(k-2)$,好像我们并不陌生呀!
里面展开就是$nk-2n-k^2-2k$我们对k求和就稍微整理一下变成$\sum_{k=3}^{n-1}[k(n-2)-2n-k^2]$,嗯第一项是等差数列,第二项是对于$k$的常数列,第三项是平方和,我们有结论$\sum_{k=1}^{n}k^2=\frac{1}{6}n(n+1)(2n+1)$,对于这题只要改个$n$再扣掉前两项就行
整个和式拆开再化简就得到这题的答案可以写成:
$\frac{n}{4}[\frac{1}{2}(n+2)^2-2(n^2-3n)-\frac{1}{6}n(n-1)(2n-1)+5]$
整个问题变成$O(1)$的复杂度啦!~(虽然好像没什么用,哈哈哈)
[打基础]luogu2181对角线——计数原理的更多相关文章
- STM32F4_TIM基本延时(计数原理)
Ⅰ.概述 STM32的TIM定时器分为三类:基本定时器.通用定时器和高级定时器.从分类来看就知道STM32的定时器功能是非常强大的,但是,功能强大了,软件配置定时器就相对复杂多了.很多初学者甚至工作了 ...
- Luogu 1351 NOIP 2014 联合权值(贪心,计数原理)
Luogu 1351 NOIP 2014 联合权值(贪心,计数原理) Description 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 Wi, ...
- 【计数原理】【UVA11538】 Chess Queen
传送门 Description 给你一个n*m的棋盘,在棋盘上放置一黑一白两个皇后,求两个皇后能够互相攻击的方案个数 Input 多组数据,每组数据包括: 一行,为n和m 输入结束标志为n=m=0. ...
- Objective-C 引用计数原理
http://www.cocoachina.com/ios/20160112/14933.html 引用计数如何存储 有些对象如果支持使用 TaggedPointer,苹果会直接将其指针值作为引用计数 ...
- oc引用计数原理-引用计数相关变化
http://blog.csdn.net/null29/article/details/71191044 在 32 位环境下,对象的引用计数都保存在一个外部的表中,每一个对象的 Retain 操作,实 ...
- polay计数原理
公式: Burnside引理: 1/|G|*(C(π1)+C(π2)+C(π3)+.....+C(πn)): C(π):指不同置换下的等价类数.例如π=(123)(3)(45)(6)(7),X={1, ...
- 数学计数原理(Pólya):POJ 1286 Necklace of Beads
Necklace of Beads Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7763 Accepted: 3247 ...
- 组合数学(Pólya计数原理):UvaOJ 10601 Cubes
Cubes You are given 12 rods of equal length. Each of them is colored in certain color. Your task is ...
- 数学计数原理(Pólya,高精度):SGU 294 He's Circles
He's Circles He wrote n letters "X" and "E" in a circle. He thought that there ...
随机推荐
- 通过RayFire为图形添加二次破碎效果
在完成3D建模之后,RayFire能帮助用户制作多种类型的破碎效果,如均匀碎片.放射状碎片.木碎等效果.另外,用户还可以利用RayFire的碎片选取功能,为图形进行二次破碎,以达到增加局部碎片的效果. ...
- 使用Folx下载热门电影居然这么简单
在闲暇的时候,很多人会选择观看电影.电视剧来打发时间.对于一些热门的资源,可以通过网页搜索的方式,找到很多与之相对应的种子资源. 但有时候,一些不那么热门的资源就要花费较多时间搜索.有了Folx bt ...
- 攻克solo第六课(大调音阶与真的爱你)
在本期文章中,笔者将通过guitar pro7和大家分享大调音阶的知识. 不知道大家有没有试着使用my song book里面的谱子,反正笔者是觉得赚大了,并且找了囊括民谣.爵士到摇滚在内不同风格的谱 ...
- FL Studio中如何使用插件混杂功能中的琶音器
琶音指一串和弦音从低到高或从高到低依次连续奏出,可视为分解和弦的一种.通常作为一种专门的技巧训练用于练习曲中,有时作为短小的连接句或经过句出现在乐曲旋律声部中.在Trance类型电子音乐中,琶音的运用 ...
- ceph 集群快速部署
1.三台Centos7的主机 [root@ceph-1 ~]# cat /etc/redhat-release CentOS Linux release 7.2.1511 (Core) 2.主机 ...
- Python学习系列之列表(十一)
一.为什么需要列表 变量可以存储一个元素,而列表是一个"大容器"可以存储N多个元素,程序可以方便地对这些数据进行整体操作 列表相当于其它语言中的数组 二.列表的创建1.列表需要使用 ...
- 【mq读书笔记】消息拉取
疑问:PullRequest何时添加? PullMessageService提供延迟添加与立即添加2种方式 疑问:PullRequest是在什么时候创建的呢? 1.上上图中 PullRequest p ...
- CentOS下解压缩
1 #gz 2 //压缩gz格式文件 3 gzip aa 4 //解压缩gz格式文件 5 gunzip -d aa.gz 6 //查看 7 Gunzip -l aa.gz 8 9 #bz 10 //压 ...
- jquery动态生成的select下拉框,怎么设置默认的选中项?
这两天都被这问题困扰,可能是我不太懂前端.我做layui表格行编辑,点击编辑按钮弹出layer,里边有一个民族的下拉框不能直接显示后台传过来的值.我把民族数组用jquery添加到了select里边,可 ...
- LeetCode 004 Median of Two Sorted Arrays
题目描述:Median of Two Sorted Arrays There are two sorted arrays A and B of size m and n respectively. F ...