Netty源码解析 -- 内存池与PoolArena
我们知道,Netty使用直接内存实现Netty零拷贝以提升性能,
但直接内存的创建和释放可能需要涉及系统调用,是比较昂贵的操作,如果每个请求都创建和释放一个直接内存,那性能肯定是不能满足要求的。
这时就需要使用内存池。
即从系统中申请一大块内存,再在上面分配每个请求所需的内存。
Netty中的内存池主要涉及PoolArena,PoolChunk与PoolSubpage。
本文主要分析PoolArena的作用与实现。
源码分析基于Netty 4.1.52
接口关系
ByteBufAllocator,内存分配器,负责为ByteBuf分配内存, 线程安全。
PooledByteBufAllocator,池化内存分配器,默认的ByteBufAllocator,预先从操作系统中申请一大块内存,在该内存上分配内存给ByteBuf,可以提高性能和减小内存碎片。
UnPooledByteBufAllocator,非池化内存分配器,每次都从操作系统中申请内存。
RecvByteBufAllocator,接收内存分配器,为Channel读入的IO数据分配一块大小合理的buffer空间。具体功能交由内部接口Handle定义。
它主要是针对Channel读入场景添加一些操作,如guess,incMessagesRead,lastBytesRead等等。
ByteBuf,分配好的内存块,可以直接使用。
下面只关注PooledByteBufAllocator,它是Netty中默认的内存分配器,也是理解Netty内存机制的难点。
内存分配
前面文章《ChannelPipeline机制与读写过程》中分析了数据读取过程,
NioByteUnsafe#read
public final void read() {
...
final RecvByteBufAllocator.Handle allocHandle = recvBufAllocHandle();
allocHandle.reset(config);
ByteBuf byteBuf = null;
...
byteBuf = allocHandle.allocate(allocator);
allocHandle.lastBytesRead(doReadBytes(byteBuf));
...
}
recvBufAllocHandle方法返回AdaptiveRecvByteBufAllocator.HandleImpl。(AdaptiveRecvByteBufAllocator,PooledByteBufAllocator都在DefaultChannelConfig中初始化)
AdaptiveRecvByteBufAllocator.HandleImpl#allocate -> AbstractByteBufAllocator#ioBuffer -> PooledByteBufAllocator#directBuffer -> PooledByteBufAllocator#newDirectBuffer
protected ByteBuf newDirectBuffer(int initialCapacity, int maxCapacity) {
// #1
PoolThreadCache cache = threadCache.get();
PoolArena<ByteBuffer> directArena = cache.directArena;
final ByteBuf buf;
if (directArena != null) {
// #2
buf = directArena.allocate(cache, initialCapacity, maxCapacity);
} else {
// #3
buf = PlatformDependent.hasUnsafe() ? UnsafeByteBufUtil.newUnsafeDirectByteBuf(this, initialCapacity, maxCapacity) : new UnpooledDirectByteBuf(this, initialCapacity, maxCapacity);
}
return toLeakAwareBuffer(buf);
}
AbstractByteBufAllocator#ioBuffer方法会判断当前系统是否支持unsafe。支持时使用直接内存,不支持则使用堆内存。这里只关注直接内存的实现。
#1
从当前线程缓存中获取对应内存池PoolArena
#2
在当前线程内存池上分配内存
#3
内存池不存在,只能使用非池化内存分配内存了
PooledByteBufAllocator#threadCache是一个PoolThreadLocalCache实例,PoolThreadLocalCache继承于FastThreadLocal,FastThreadLocal这里简单理解为对ThreadLocal的优化,它为每个线程维护了一个PoolThreadCache,PoolThreadCache上关联了内存池。
当PoolThreadLocalCache上某个线程的PoolThreadCache不存在时,通过initialValue方法构造。
PoolThreadLocalCache#initialValue
protected synchronized PoolThreadCache initialValue() {
// #1
final PoolArena<byte[]> heapArena = leastUsedArena(heapArenas);
final PoolArena<ByteBuffer> directArena = leastUsedArena(directArenas);
// #2
final Thread current = Thread.currentThread();
if (useCacheForAllThreads || current instanceof FastThreadLocalThread) {
final PoolThreadCache cache = new PoolThreadCache(
heapArena, directArena, smallCacheSize, normalCacheSize,
DEFAULT_MAX_CACHED_BUFFER_CAPACITY, DEFAULT_CACHE_TRIM_INTERVAL);
...
}
// No caching so just use 0 as sizes.
return new PoolThreadCache(heapArena, directArena, 0, 0, 0, 0);
}
#1
从PooledByteBufAllocator的heapArenas,directArenas中获取使用率最小的PoolArena。
PooledByteBufAllocator构造时默认会为PooledByteBufAllocator#directArenas初始化8个PoolArena。
#2
构造PoolThreadCache。
PoolArena,可以理解为一个内存池,负责管理从操作系统中申请到的内存块。
PoolThreadCache为每一个线程关联一个PoolArena(PoolThreadCache#directArena),该线程的内存都在该PoolArena上分配。
Netty支持高并发系统,可能有很多线程进行同时内存分配。为了缓解线程竞争,通过创建多个PoolArena细化锁的粒度,从而提高并发执行的效率。
注意,一个PoolArena可以会分给多个的线程,可以看到PoolArena上会有一些同步操作。
内存级别
前面分析SizeClasses的文章说过,Netty将内存池中的内存块按大小划分为3个级别。
不同级别的内存块管理算法不同。默认划分规则如下:
small <= 28672(28K)
normal <= 16777216(16M)
huge > 16777216(16M)
smallSubpagePools是一个PoolSubpage数组,负责维护small级别的内存块信息。
PoolChunk负责维护normal级别的内存,PoolChunkList管理一组PoolChunk。
PoolArena按内存使用率将PoolChunk分别维护到6个PoolChunkList中,
PoolArena按内存使用率将PoolChunk分别维护到6个PoolChunkList中,
qInit->内存使用率为0~25,
q000->内存使用率为1~50,
q025->内存使用率为25~75,
q050->内存使用率为50~75,
q075->内存使用率为75~100,
q100->内存使用率为100。
注意:PoolChunk是Netty每次向操作系统申请的内存块。
PoolSubpage需要从PoolChunk中分配,而Tiny,Small级別的内存则是从PoolSubpage中分配。
下面来看一下分配过程
private void allocate(PoolThreadCache cache, PooledByteBuf<T> buf, final int reqCapacity) {
// #1
final int sizeIdx = size2SizeIdx(reqCapacity);
// #2
if (sizeIdx <= smallMaxSizeIdx) {
tcacheAllocateSmall(cache, buf, reqCapacity, sizeIdx);
} else if (sizeIdx < nSizes) {
// #3
tcacheAllocateNormal(cache, buf, reqCapacity, sizeIdx);
} else {
// #4
int normCapacity = directMemoryCacheAlignment > 0
? normalizeSize(reqCapacity) : reqCapacity;
// Huge allocations are never served via the cache so just call allocateHuge
allocateHuge(buf, normCapacity);
}
}
#1
size2SizeIdx是父类SizeClasses提供的方法,它使用特定算法,将申请的内存大小调整为规范大小,划分到对应位置,返回对应索引,可参考《内存对齐类SizeClasses》
#2
分配small级别的内存块
#3
分配normal级别的内存块
#4
分配huge级别的内存块
private void tcacheAllocateSmall(PoolThreadCache cache, PooledByteBuf<T> buf, final int reqCapacity,
final int sizeIdx) {
// #1
if (cache.allocateSmall(this, buf, reqCapacity, sizeIdx)) {
return;
}
// #2
final PoolSubpage<T> head = smallSubpagePools[sizeIdx];
final boolean needsNormalAllocation;
synchronized (head) {
// #3
final PoolSubpage<T> s = head.next;
needsNormalAllocation = s == head;
if (!needsNormalAllocation) {
assert s.doNotDestroy && s.elemSize == sizeIdx2size(sizeIdx);
long handle = s.allocate();
assert handle >= 0;
s.chunk.initBufWithSubpage(buf, null, handle, reqCapacity, cache);
}
}
// #4
if (needsNormalAllocation) {
synchronized (this) {
allocateNormal(buf, reqCapacity, sizeIdx, cache);
}
}
incSmallAllocation();
}
#1
首先尝试在线程缓存上分配。
除了PoolArena,PoolThreadCache#smallSubPageHeapCaches还为每个线程维护了Small级别的内存缓存
#2
使用前面SizeClasses#size2SizeIdx方法计算的索引,获取对应PoolSubpage
#3
注意,head是一个占位节点,并不存储数据,s==head表示当前存在可以用的PoolSubpage,因为已经耗尽的PoolSubpage是会从链表中移除。
接着从PoolSubpage中分配内存,后面有文章解析详细过程
注意,这里必要运行在同步机制中。
#4
没有可用的PoolSubpage,需要申请一个Normal级别的内存块,再在上面分配所需内存
normal级别的内存也是先尝试在线程缓存中分配,分配失败后再调用allocateNormal方法申请
PoolArena#allocate -> allocateNormal
private void allocateNormal(PooledByteBuf<T> buf, int reqCapacity, int sizeIdx, PoolThreadCache threadCache) {
if (q050.allocate(buf, reqCapacity, sizeIdx, threadCache) ||
q025.allocate(buf, reqCapacity, sizeIdx, threadCache) ||
q000.allocate(buf, reqCapacity, sizeIdx, threadCache) ||
qInit.allocate(buf, reqCapacity, sizeIdx, threadCache) ||
q075.allocate(buf, reqCapacity, sizeIdx, threadCache)) {
return;
}
// Add a new chunk.
PoolChunk<T> c = newChunk(pageSize, nPSizes, pageShifts, chunkSize);
boolean success = c.allocate(buf, reqCapacity, sizeIdx, threadCache);
assert success;
qInit.add(c);
}
#1
依次从q050,q025,q000,qInit,q075上申请内存
为什么要是这个顺序呢?
PoolArena中的PoolChunkList之间也组成一个“双向”链表
qInit ---> q000 <---> q025 <---> q050 <---> q075 <---> q100
PoolChunkList中还维护了minUsage,maxUsage,即当一个PoolChunk使用率大于maxUsage,它将被移动到下一个PoolChunkList,使用率小于minUsage,则被移动到前一个PoolChunkList。
注意:q000没有前置节点,它的minUsage为1,即上面的PoolChunk内存完全释放后,将被销毁。
qInit的前置节点是它自己,但它的minUsage为Integer.MIN_VALUE,即使上面的PoolChunk内存完全释放后,也不会被销毁,而是继续保留在内存。
不优先从q000分配,正是因为q000上的PoolChunk内存完全释放后要被销毁,如果在上面分配,则会延迟内存的回收进度。
而q075上由于内存利用率太高,导致内存分配的成功率大大降低,因此放到最后。
所以从q050是一个不错的选择,这样大部分情况下,Chunk的利用率都会保持在一个较高水平,提高整个应用的内存利用率;
在PoolChunkList上申请内存,PoolChunkList会遍历链表上PoolChunk节点,直到分配成功或到达链表末尾。
PoolChunk分配后,如果内存使用率高于maxUsage,它将被移动到下一个PoolChunkList。
newChunk方法负责构造一个PoolChunk,这里是内存池向操作系统申请内存。
DirectArena#newChunk
protected PoolChunk<ByteBuffer> newChunk(int pageSize, int maxPageIdx,
int pageShifts, int chunkSize) {
if (directMemoryCacheAlignment == 0) {
return new PoolChunk<ByteBuffer>(this,
allocateDirect(chunkSize), pageSize, pageShifts,
chunkSize, maxPageIdx, 0);
}
final ByteBuffer memory = allocateDirect(chunkSize
+ directMemoryCacheAlignment);
return new PoolChunk<ByteBuffer>(this, memory, pageSize,
pageShifts, chunkSize, maxPageIdx,
offsetCacheLine(memory));
}
allocateDirect方法向操作系统申请内存,获得一个(jvm)ByteBuffer,
PoolChunk#memory维护了该ByteBuffer,PoolChunk的内存实际上都是在该ByteBuffer上分配。
最后是huge级别的内存申请
private void allocateHuge(PooledByteBuf<T> buf, int reqCapacity) {
PoolChunk<T> chunk = newUnpooledChunk(reqCapacity);
activeBytesHuge.add(chunk.chunkSize());
buf.initUnpooled(chunk, reqCapacity);
allocationsHuge.increment();
}
比较简单,没有使用内存池,直接向操作系统申请内存。
内存释放
void free(PoolChunk<T> chunk, ByteBuffer nioBuffer, long handle, int normCapacity, PoolThreadCache cache) {
if (chunk.unpooled) {
// #1
int size = chunk.chunkSize();
destroyChunk(chunk);
activeBytesHuge.add(-size);
deallocationsHuge.increment();
} else {
// #2
SizeClass sizeClass = sizeClass(handle);
if (cache != null && cache.add(this, chunk, nioBuffer, handle, normCapacity, sizeClass)) {
// cached so not free it.
return;
}
freeChunk(chunk, handle, normCapacity, sizeClass, nioBuffer, false);
}
}
#1
非池化内存,直接销毁内存
#2
池化内存,首先尝试加到线程缓存中,成功则不需要其他操作。失败则调用freeChunk
void freeChunk(PoolChunk<T> chunk, long handle, int normCapacity, SizeClass sizeClass, ByteBuffer nioBuffer,
boolean finalizer) {
final boolean destroyChunk;
synchronized (this) {
...
destroyChunk = !chunk.parent.free(chunk, handle, normCapacity, nioBuffer);
}
if (destroyChunk) {
// destroyChunk not need to be called while holding the synchronized lock.
destroyChunk(chunk);
}
}
chunk.parent即PoolChunkList,PoolChunkList#free会调用PoolChunk释放内存,释放内存后,如果内存使用率低于minUsage,则移动前一个PoolChunkList,如果前一个PoolChunkList不存在(q000),则返回false,由后面的步骤销毁该PoolChunk。
可回顾前面解析ByteBuf文章中关于内存销毁的内容。
如果您觉得本文不错,欢迎关注我的微信公众号,系列文章持续更新中。您的关注是我坚持的动力!
Netty源码解析 -- 内存池与PoolArena的更多相关文章
- Netty源码解析 -- 内存对齐类SizeClasses
在学习Netty内存池之前,我们先了解一下Netty的内存对齐类SizeClasses,它为Netty内存池中的内存块提供大小对齐,索引计算等服务方法. 源码分析基于Netty 4.1.52 Nett ...
- Netty源码解析 -- 对象池Recycler实现原理
由于在Java中创建一个实例的消耗不小,很多框架为了提高性能都使用对象池,Netty也不例外. 本文主要分析Netty对象池Recycler的实现原理. 源码分析基于Netty 4.1.52 缓存对象 ...
- Netty 源码解析(五): Netty 的线程池分析
今天是猿灯塔“365篇原创计划”第五篇. 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty 源码解析(一): 开始 Netty 源码解析(二): Netty 的 Channel Netty ...
- Netty 源码解析(三): Netty 的 Future 和 Promise
今天是猿灯塔“365篇原创计划”第三篇. 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty 源码解析(一): 开始 Netty 源码解析(二): Netty 的 Channel 当前:Ne ...
- Netty 源码解析(九): connect 过程和 bind 过程分析
原创申明:本文由公众号[猿灯塔]原创,转载请说明出处标注 今天是猿灯塔“365篇原创计划”第九篇. 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty 源码解析(一): 开始 Netty 源 ...
- Netty 源码解析(八): 回到 Channel 的 register 操作
原创申明:本文由公众号[猿灯塔]原创,转载请说明出处标注 今天是猿灯塔“365篇原创计划”第八篇. 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty 源码解析(一): 开始 Netty 源 ...
- Netty 源码解析(七): NioEventLoop 工作流程
原创申明:本文由公众号[猿灯塔]原创,转载请说明出处标注 今天是猿灯塔“365篇原创计划”第七篇. 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty 源码解析(一): 开始 Netty 源 ...
- Netty 源码解析(六): Channel 的 register 操作
原创申明:本文由公众号[猿灯塔]原创,转载请说明出处标注 今天是猿灯塔“365篇原创计划”第六篇. 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty 源码解析(一 ):开始 Netty ...
- Netty 源码解析(四): Netty 的 ChannelPipeline
今天是猿灯塔“365篇原创计划”第四篇. 接下来的时间灯塔君持续更新Netty系列一共九篇 Netty 源码解析(一): 开始 Netty 源码解析(二): Netty 的 Channel Netty ...
随机推荐
- 【转】Hello SDL
from:http://lazyfoo.net/tutorials/SDL/01_hello_SDL/index.php Last Updated 6/11/19 So you learned the ...
- think PHP5.1使用时 session重定向丢失问题
查了很多资料,也看了redirect底层代码,具体来说,还是多个用的地方不太对.做个笔记防忘记: 遇重定向后丢失session时: 1.php.ini配置文件,不要自动启动,默认是0,session. ...
- 【QT】子类化QThread实现多线程
<QThread源码浅析> 子类化QThread来实现多线程, QThread只有run函数是在新线程里的,其他所有函数都在QThread生成的线程里.正确启动线程的方法是调用QThrea ...
- linux-gcc简要知识点 **
目录 交叉编译 简要知识点 ** 一些概念 GCC编译器 GCC简要使用 GCC编译过程 ** 常用的编译选项 编译多个文件 制作.使用动态库 制作.使用静态库 很有用的选项 参考 交叉编译 使用不同 ...
- Java每日一考202011.4
1.JDK,JRE,JVM三者之间的关系 JDK包含JRE,JRE包含JVM JDK=JRE+JAVA的开发工具 JRE=JVM+JAVA核心类库 2.为什么要配置环境变量? 希望在任何路径下都能执行 ...
- php 断点续传以及100% 后台zip解压
前台部分 <div class="col-md-12"> <div class="form-group"> <label clas ...
- Docker学习笔记:Alpine镜像+Python3安装+http服务器
编写Dockerfile文件使用最新的Alpine镜像并安装Python3环境,如下: 因为python高于3.4则不会默认安装pip,需要手动安装. 试了很多其他办法都没安装上,唯有下载get-pi ...
- 使用JAVA API读取HDFS的文件数据出现乱码的解决方案
使用JAVA api读取HDFS文件乱码踩坑 想写一个读取HFDS上的部分文件数据做预览的接口,根据网上的博客实现后,发现有时读取信息会出现乱码,例如读取一个csv时,字符串之间被逗号分割 英文字符串 ...
- 实现一个简易vue
vue主要的功能实现主要分为3部分: 数据劫持/数据代理:数据改变时通知相关函数进行更新操作 数据依赖收集:建立保存dom节点与数据的关联关系 模板与数据之间的绑定:接受到新数据时对dom节点进行更新 ...
- wait函数与waitpid函数(僵尸进程)
当子进程退出时,内核会向父进程发送SIGCHLD信号,子进程的退出是个异步事件(子进程可以在父进程运行的任何时刻终止) 子进程退出时,内核将子进程置为僵尸状态,这个进程称为僵尸进程.它只保留最小的一些 ...