Codeforce 1311 F. Moving Points 解析(思維、離散化、BIT、前綴和)

今天我們來看看CF1311F

題目連結

題目

略,請直接看原題。

前言

最近寫1900的題目更容易不看題解了,不知道是不是較少人\(AC\)的同難度題目會比較簡單。

想法

首先注意到,如果\(x\)座標上的前後兩點\(x_i,x_j\),\(x_i<x_j\),如果\(v[x_i]>v[x_j]\),不管\(v\)是正是負,兩點一定某個時候會重疊。反之,如果\(v[x_i]\le v[x_j]\),那麼我們就需要把答案加上\(x_j-x_i\)。

而我們可能會想到用\(BIT\)來維護\(:\)到某個\(x\)座標為止,小於等於某個速度的點有多少個。但是\(-10^8\le v_i\le10^8\)實在太大了,因此我們需要離散化\(v\),把範圍縮到至少\([1,n]\)。

但是我們可能會發現,我們不只需要維護小於等於某個速度的點有多少個,還需要知道這些點和目前看的點\(x_i\)的距離的和。

因此我們可以這樣做:首先把所有\(x_i\)減去最小的\(x\)值(也就是把\(x\)陣列平移到非負座標)。這樣一來\(BIT\)維護目前有\(r\)個點的速度小於等於\(v\),且這些點的\(x\)座標和為\(p\),那麼當我們考慮\(x_j\)這個點的時候(要去找有多少在\(x_j\)之前的點的速度比\(x_j\)的速度小),只需要把答案加上\(r\times x_j-p\)即可。

注意,本題\(x\)座標沒有排序,要自己先排序過。

且這題我的程式碼中的\(PII\)是\(pair<long\ long,long\ long>\)

程式碼:

const int _n=2e5+10;
int t,n,minn=1e9;
VI vv;
PII s[_n];
namespace BIT{
int nn;PII t[_n];
void update(int x,int val){while(x<=nn)t[x].fi+=val,t[x].se++,x+=(x&-x);}
//這模板是1-base,而且update是把修改量加上去
PII query(int x){PII res={0,0};while(x>0){res.fi+=t[x].fi,res.se+=t[x].se,x-=(x&-x);}return res;}
void init(int n_){nn=n_;}
}
main(void) {cin.tie(0);ios_base::sync_with_stdio(0);
cin>>n;rep(i,1,n+1){cin>>s[i].fi;minn=min(minn,s[i].fi);}rep(i,1,n+1){cin>>s[i].se;vv.pb(s[i].se);}
sort(s+1,s+n+1);sort(all(vv));int nn=unique(all(vv))-vv.begin();
rep(i,1,n+1)s[i].se=lower_bound(vv.begin(),vv.begin()+nn,s[i].se)-vv.begin()+1;
rep(i,1,n+1)s[i].fi-=minn;
BIT::init(nn); ll ans=0;
rep(i,1,n+1){
PII res=BIT::query(s[i].se);
ans+=1ll*s[i].fi*res.se-res.fi;
BIT::update(s[i].se,s[i].fi);
}cout<<ans<<'\n';
return 0;
}

標頭、模板請點Submission看

Submission

F. Moving Points 解析(思維、離散化、BIT、前綴和)的更多相关文章

  1. D. Rescue Nibel! 解析(思維、組合、離散化、差分)

    Codeforce 1420 D. Rescue Nibel! 解析(思維.組合.離散化.差分) 今天我們來看看CF1420D 題目連結 題目 給你\(n\)個區間,求有幾種方法使得\(k\)個區間的 ...

  2. E. Enemy is weak 解析(思維、離散化、BIT、線段樹)

    Codeforce 61 E. Enemy is weak 解析(思維.離散化.BIT.線段樹) 今天我們來看看CF61E 題目連結 題目 給一個數列\(a\),求有多少\((i,j,k)\),\(i ...

  3. F. Make It Connected 解析(思維、MST)

    Codeforce 1095 F. Make It Connected 解析(思維.MST) 今天我們來看看CF1095F 題目連結 題目 給你\(n\)個點,每個點\(u\)還有一個值\(a[u]\ ...

  4. A. Peter and Snow Blower 解析(思維、幾何)

    Codeforce 613 A. Peter and Snow Blower 解析(思維.幾何) 今天我們來看看CF613A 題目連結 題目 給你一個點\(P\)和\(n\)個點形成的多邊形(照順或逆 ...

  5. C. k-Amazing Numbers 解析(思維)

    Codeforce 1417 C. k-Amazing Numbers 解析(思維) 今天我們來看看CF1417C 題目連結 題目 略,請直接看原題. 前言 我實作好慢... @copyright p ...

  6. E. Tree Queries 解析(思維、LCA)

    Codeforce 1328 E. Tree Queries 解析(思維.LCA) 今天我們來看看CF1328E 題目連結 題目 給你一棵樹,並且給你\(m\le2e5\)個詢問(包含\(k\)個點) ...

  7. E. Xenia and Tree 解析(思維、重心剖分)

    Codeforce 342 E. Xenia and Tree 解析(思維.重心剖分) 今天我們來看看CF342E 題目連結 題目 給你一棵樹,有兩種操作,把某點標成紅色或者查詢離某點最近的紅點有多遠 ...

  8. D. New Year Santa Network 解析(思維、DFS、組合、樹狀DP)

    Codeforce 500 D. New Year Santa Network 解析(思維.DFS.組合.樹狀DP) 今天我們來看看CF500D 題目連結 題目 給你一棵有邊權的樹,求現在隨機取\(3 ...

  9. B. Game of the Rows 解析(思維)

    Codeforce 839 B. Game of the Rows 解析(思維) 今天我們來看看CF839B 題目連結 題目 有如下圖片所示的飛機座位\(n\)排,和\(k\)隊士兵,每隊數量不一定. ...

随机推荐

  1. 空间向量变换,以及OpenGL的glm库简单应用

    测试项目请查看GitHub库 GLBIproject2/GLBIProject2_2

  2. 一款Java开源的Springboot即时通讯 IM,附源码

    # 开篇 电商平台最不能缺的就是即时通讯,例如通知类下发,客服聊天等.今天,就来给大家分享一个开源的即时通讯系统.如对文章不感兴趣可直接跳至文章末尾,有获取源码链接的方法. 但文章内容是需要你简单的过 ...

  3. Emit动态生成代理类用于监控对象的字段修改

    利用Emit动态生成代理对象监控对象哪些字段被修改,被修改为什么值 被Register的对象要监控的值必须是Virtual虚类型 必须使用CreateInstance创建对象 必须使用DynamicP ...

  4. Vue登录注册,并保持登录状态

    关于vue登录注册,并保持登录状态,是vue玩家必经之路,网上也有很多的解决方法,但是有一些太过于复杂,新手可能会看的一脸懵逼,现在给大家介绍一种我自己写项目在用而且并不难理解的一种方法. 项目中有一 ...

  5. helm部署mysql

    如果您的kubernetes已有了helm,那么部署mysql的步骤可以进一步简化,那些原先需要自己动手配置的deployment和service都已集成在chart中,今天就来实战通过helm部署m ...

  6. 记录一下第一次写 50行 SQL代码

    这 是一个电商项目,做的是报表的展示,我还以为要请求几次,结果,用一个SQL全部查完了 下面是目标效果图 这是我的SQL代码 SELECT product.NAME, product.price, p ...

  7. 091 01 Android 零基础入门 02 Java面向对象 02 Java封装 01 封装的实现 03 # 088 01 Android 零基础入门 02 Java面向对象 02 Java封装 02 static关键字 01 static关键字(上)

    091 01 Android 零基础入门 02 Java面向对象 02 Java封装 01 封装的实现 03 # 088 01 Android 零基础入门 02 Java面向对象 02 Java封装 ...

  8. SPI通信基础学习

    SPI是"Serial Peripheral Interface"的缩写,即"串行外设接口",是摩托罗拉公司推出的一种串行接口通信协议. 接线的示意图: SPI ...

  9. Java中类型判断的几种方式

    1. 前言 在Java这种强类型语言中类型转换.类型判断是经常遇到的.今天就细数一下Java中类型判断的方法方式. 2. instanceof instanceof是Java的一个运算符,用来判断一个 ...

  10. centos7.5安装gcc7.2.0

    参考https://www.cnblogs.com/lazyInsects/p/9778910.html cd /usr/src wget https://mirrors.tuna.tsinghua. ...