一、线性关系数据可视化lmplot( )

表示对所统计的数据做散点图,并拟合一个一元线性回归关系。

lmplot(x, y, data, hue=None, col=None, row=None, palette=None,col_wrap=None, height=5, aspect=1,markers="o",

      sharex=True,sharey=True, hue_order=None, col_order=None,row_order=None,legend=True, legend_out=True,

x_estimator=None, x_bins=None,x_ci="ci", scatter=True, fit_reg=True, ci=95, n_boot=1000,units=None, order=1,

logistic=False, lowess=False, robust=False,logx=False, x_partial=None, y_partial=None, truncate=False,x_jitter=None,

y_jitter=None, scatter_kws=None, line_kws=None, size=None)

  • x和y 表示显示x和y的线性关系
  • hue 表示对x按照hue进行分类,每个分类都在同一个图表显示
  • hue_order 按照hue分类后,多分类的结果进行筛选和显示排序
  • col和row 表示对hue的分类拆分为多个图表显示,或者对x按照col分类并拆分为多个横向的独立图表、或者对x按照row分类并拆分为多个竖直的独立图表
  • col_order和row_order 按照col和row分类拆分后,多分类进行删选和显示排序
  • col_wrap 每行显示的图表个数
  • height 每个图表的高度(最后一个参数size即height,size正被height替代)
  • aspect 每个图表的长宽比,默认为1即显示为正方形
  • marker 点的形式,
  • sharex和sharey 拆分为多个图表时是否共用x轴和y轴,默认共用
  • x_jitter和y_jitter 给x轴和y轴随机增加噪点
#hue分类,col图表拆分
sns.lmplot(x="tip", y="total_bill",data=tips,hue='smoker',palette="Set1",ci = 80, markers = ['+','o']) #是否吸烟在同一个图表显示
sns.lmplot(x="tip", y="total_bill",data=tips,hue='day',col='day',sharex=True,markers='.') #按日期拆分为独立的图表

sns.lmplot(x="tip", y="total_bill",data=tips,col='time',row='sex',height=3) #行拆分和列拆分

二、时间线图lineplot()

时间线图用lineplot()表示,tsplot()正在被替代。

lineplot(x=None, y=None, hue=None, size=None, style=None, data=None, palette=None, hue_order=None, hue_norm=None,
            sizes=None, size_order=None, size_norm=None,dashes=True, markers=None, style_order=None,units=None,
            estimator="mean", ci=95, n_boot=1000,sort=True, err_style="band", err_kws=None,legend="brief", ax=None, **kwargs)

fmri = sns.load_dataset("fmri")
ax = sns.lineplot(x="timepoint", y="signal", data=fmri)
fmri.head()

   

三、热图heatmap()

热图只针对二维数据,用颜色的深浅表示大小,数值越小颜色越深。

heatmap(data, vmin=None, vmax=None, cmap=None, center=None, robust=False,annot=None, fmt=".2g",
              annot_kws=None,linewidths=0, linecolor="white",cbar=True, cbar_kws=None, cbar_ax=None,
              square=False, xticklabels="auto", yticklabels="auto",mask=None, ax=None, **kwargs)

  • data 二维数据
  • vmin和vmax 调色板的最小值和最大值
  • annot 图中是否显示数值
  • fmt 格式化数值
  • linewidth和linecolor 格子线宽和颜色
  • cbar 是否显示色带
  • cbar_kws 色带的参数设置,字典形式,在cbar设置为True时才生效,例如{"orientation": "horizontal"}表示横向显示色带
  • square 每个格子是否为正方形
rng = np.random.RandomState(1)
df = pd.DataFrame(rng.randint(1,10,(10,12)))
fig = plt.figure(figsize=(15,6))
ax1 = plt.subplot(121)
sns.heatmap(df,vmin=3,vmax=8,linewidth=0.2,square=True)
ax2 = plt.subplot(122)
sns.heatmap(df,annot=True,square=False,cbar_kws={"orientation": "horizontal"})

生成半边热图,mask参数

rs = np.random.RandomState(33)
d = pd.DataFrame(rs.normal(size=(100, 26)))
corr = d.corr() #求解相关性矩阵表格,26*26的一个正方数据 mask = np.zeros_like(corr, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
# 设置一个“上三角形”蒙版 cmap = sns.diverging_palette(220, 10, as_cmap=True)# 设置调色盘 sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0,square=True, linewidths=0.2)

四、结构化图表可视化

tips = sns.load_dataset("tips")  # 导入数据
g = sns.FacetGrid(tips, col="time", row="smoker")# 创建一个绘图表格区域,列按time分类、行按smoker分类
g.map(plt.hist, "total_bill",alpha = 0.5,color = 'b',bins = 10) # 以total_bill字段数据分别做直方图统计

g = sns.FacetGrid(tips, col="day",
height=4, # 图表大小
aspect=.8) # 图表长宽比 g.map(plt.hist, "total_bill", bins=10,
histtype = 'step', #'bar', 'barstacked', 'step', 'stepfilled'
color = 'k')

#散点图
g = sns.FacetGrid(tips, col="time", row="smoker") g.map(plt.scatter,
"total_bill", "tip", # share{x,y} → 设置x、y数据
edgecolor="w", s = 40, linewidth = 1) # 设置点大小,描边宽度及颜色

g = sns.FacetGrid(tips, col="time", hue="smoker") # 创建一个绘图表格区域,列按col分类,按hue分类

g.map(plt.scatter,
"total_bill", "tip", # share{x,y} → 设置x、y数据
edgecolor="w", s = 40, linewidth = 1) # 设置点大小,描边宽度及颜色
g.add_legend()

attend = sns.load_dataset("attention")
print(attend.head()) g = sns.FacetGrid(attend, col="subject", col_wrap=5,# 设置每行的图表数量
size=1.5)
g.map(plt.plot, "solutions", "score", marker="o",color = 'gray',linewidth = 2)# 绘制图表矩阵 g.set(xlim = (0,4),ylim = (0,10),xticks = [0,1,2,3,4], yticks = [0,2,4,6,8,10]) # 设置x,y轴刻度

seaborn线性关系数据可视化:时间线图|热图|结构化图表可视化的更多相关文章

  1. Python图表数据可视化Seaborn:4. 结构化图表可视化

    1.基本设置 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns ...

  2. 只能用于文本与图像数据?No!看TabTransformer对结构化业务数据精准建模

    作者:韩信子@ShowMeAI 深度学习实战系列:https://www.showmeai.tech/tutorials/42 TensorFlow 实战系列:https://www.showmeai ...

  3. 基于HTML5实现3D热图Heatmap应用

    Heatmap热图通过众多数据点信息,汇聚成直观可视化颜色效果,热图已广泛被应用于气象预报.医疗成像.机房温度监控等行业,甚至应用于竞技体育领域的数据分析. http://www.hightopo.c ...

  4. 基于HTML5实现的Heatmap热图3D应用

    Heatmap热图通过众多数据点信息,汇聚成直观可视化颜色效果,热图已广泛被应用于气象预报.医疗成像.机房温度监控等行业,甚至应用于竞技体育领域的数据分析. 已有众多文章分享了生成Heatmap热图原 ...

  5. 扩增子图表解读3热图:差异菌、OTU及功能

    热图是使用颜色来展示数值矩阵的图形.通常还会结合行.列的聚类分析,以表达实验数据多方面的结果.  热图在生物学领域应用广泛,尤其在高通量测序的结果展示中很流行,如样品-基因表达,样品-OTU相对丰度矩 ...

  6. Bigtable:一个分布式的结构化数据存储系统

    Bigtable:一个分布式的结构化数据存储系统 摘要 Bigtable是一个管理结构化数据的分布式存储系统,它被设计用来处理海量数据:分布在数千台通用服务器上的PB级的数据.Google的很多项目将 ...

  7. 结构化数据、半结构化数据、非结构化数据——Hadoop处理非结构化数据

    刚开始接触Hadoop ,指南中说Hadoop处理非结构化数据,学习数据库的时候,老师总提结构化数据,就是一张二维表,那非结构化数据是什么呢?难道是文本那样的文件?经过上网搜索,感觉这个帖子不错 网址 ...

  8. MySQL 5.7:非结构化数据存储的新选择

    本文转载自:http://www.innomysql.net/article/23959.html (只作转载, 不代表本站和博主同意文中观点或证实文中信息) 工作10余年,没有一个版本能像MySQL ...

  9. Python图表数据可视化Seaborn:3. 线性关系数据| 时间线图表| 热图

    1. 线性关系数据可视化 lmplot( ) import numpy as np import pandas as pd import matplotlib.pyplot as plt import ...

随机推荐

  1. HDU3686 Traffic Real Time Query【缩点+lca】

    题目 City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, t ...

  2. CSDN首页

    打开CSDN首页,大部分的内容都是——AI,大数据,Python,很少谈及C#,谈到了也是拿C#做反面对比.博客园的首页没有这种恶意诋毁的言论,什么都有,.net的文章也很多,你发你的大数据和AI,我 ...

  3. Tornado之异步非阻塞

    同步模式:同步模式下,只有处理完前一个任务下一个才会执行 class MainHandler(tornado.web.RequestHandler): def get(self): time.slee ...

  4. 简易的java爬虫项目

    简易的java爬虫项目 本项目仅供java新手学习交流,由于本人也是一名java初学者,所以项目中也有很多不规范的地方,希望各位高手不吝赐教,在评论区指出我的不足,我会虚心学习: 成果预览: 在开始讲 ...

  5. 最快安装AndroidStudio的方法(小歪整理)

    最快安装AndroidStudio的方法(小歪整理)-干货,加速加载和解决无法预览布局文件的等问题 最快安装AndroidStudio的方法(小歪整理) 1.使用解压压缩包的方式安装:android- ...

  6. BZOJ3573 米特运输 题解

    题目 米特是D星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题.D星上有N个城市,我们将其顺序编号为1到N,1号城市为首都.这N个城市由 ...

  7. 二叉树的深度(剑指offer-38)

    题目描述 输入一棵二叉树,求该树的深度.从根结点到叶结点依次经过的结点(含根.叶结点)形成树的一条路径,最长路径的长度为树的深度. 递归解析: 思路: 从根节点出发,查询左子树的深度,获取右子树的深度 ...

  8. uni-app 使用个推推送系统消息

    原文可查看此处 ,搜索 uni-app 使用个推推送系统消息 https://mp.weixin.qq.com/mp/profile_ext?action=home&__biz=Mzg3NTA ...

  9. day71 django收尾

    目录 一.Auth模块 1 简介 2 方法总结 3 如何扩展auth_user表 二.bbs表介绍 1 项目开发流程 2 bbs七张表关系 一.Auth模块 1 简介 在我们创建好一个django项目 ...

  10. 基层教师 - CMD命令之net命令与IPC连接

    1)建立空连接: net use \\IP\ipc$ "" /user:"" (一定要注意:这一行命令中包含了3个空格) 2)建立非空连接: net use \ ...