「单调队列优化DP」P2034 选择数字

题面描述:

给定一行n个非负整数a[1]..a[n]。现在你可以选择其中若干个数,但不能有超过k个连续的数字被选择。你的任务是使得选出的数字的和最大。

输入格式

第一行两个整数n,k

以下n行,每行一个整数表示a[i]。

输出格式

输出一个值表示答案。

输入输出样例

输入 #1

5 2

1

2

3

4

5

输出 #1

12

说明/提示

对于20%的数据,n <= 10

对于另外20%的数据, k = 1

对于60%的数据,n <= 1000

对于100%的数据,1 <= n <= 100000,1 <= k <= n,0 <= 数字大小 <= 1,000,000,000

时间限制500ms

解法

一般正常求序列几段和都要求前缀和,f的第一维都是前i项的最优值

那我们直接开始吧,

f[i]=max(f[j])+a[i] ( i-k<=j<i )

然鹅叫上去可能只对两个点(可能连样例都不过),原因是方程都错了,少了一维,i不一定选取就是最佳选择,如1 8 4 2 999 k=2,显然不选4要更优, 所以正确的转移方程:

//0表示不选第i个数,1表示选第i个数

f[0][i]=max(f[0][i-1],f[1][i-1]);

f[1][i]=max(f[0][j]-sum[j])+sum[i];

亲测O(n*n)+快读能压线过

所以考虑优化

我们用单调队列维护f[0][j]-sum[j]的最优值,因为它完全符合单调性,维护就完事

代码:

/*#!/bin/sh
dir=$GEDIT_CURRENT_DOCUMENT_DIR
name=$GEDIT_CURRENT_DOCUMENT_NAME
pre=${name%.*}
g++ -O2 $dir/$name -o $pre -g -Wall -std=c++11
if test $? -eq 0; then
gnome-terminal -x bash -c "time $dir/$pre;echo;read;"
fi*/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=1e6+5,INF=0x3f3f3f3f;
inline int read(){
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();};
while(ch>='0'&&ch<='9')s=s*10+ch-'0',ch=getchar();
return s*w;
}
int n,d,a[maxn],head=1,tail;
long long sum[maxn],f[2][maxn],q[maxn];//每个数有1e9诶
int main(){
n=read();d=read();
for(int i=1;i<=n;i++)a[i]=read(),sum[i]=sum[i-1]+a[i];
f[1][1]=a[1];tail++;//tail=0需要初始化,tail=1就不需要,推荐写tail=0
for(int i=2;i<=n;i++){
f[0][i]=max(f[0][i-1],f[1][i-1]);//不选第i个数的情况
while(head<=tail&&i-q[head]>d)head++;//维护队首,i-k>j(q[head])
f[1][i]=f[0][q[head]]-sum[q[head]]+sum[i];
while(head<=tail&&f[0][i]-sum[i]>f[0][q[tail]]-sum[q[tail]])tail--;//维护队列单调性,新数大于原数就出队
q[++tail]=i;
}
cout<<max(f[0][n],f[1][n]); }

「单调队列优化DP」P2034 选择数字的更多相关文章

  1. 「学习笔记」单调队列优化dp

    目录 算法 例题 最大子段和 题意 思路 代码 修剪草坪 题意 思路 代码 瑰丽华尔兹 题意 思路 代码 股票交易 题意 思路 代码 算法 使用单调队列优化dp 废话 对与一些dp的转移方程,我们可以 ...

  2. 【单调队列优化dp】 分组

    [单调队列优化dp] 分组 >>>>题目 [题目] 给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择.你的任务是使得选出的数字的和最大 [输入格式] ...

  3. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  4. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  5. hdu3401:单调队列优化dp

    第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...

  6. Parade(单调队列优化dp)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others)    ...

  7. BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP

    BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...

  8. [小明打联盟][斜率/单调队列 优化dp][背包]

    链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...

  9. 单调队列以及单调队列优化DP

    单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...

随机推荐

  1. Linux 自动挂载与fstab文件修复

    /etc/fstab文件 自动挂载就是写入/etc/fstab文件 vi /etc/fstab 其中,第九行是/分区的自动挂载信息,有6个字段 第一字段表示分区的UUID(硬盘通用唯一识别码,使用du ...

  2. iOS -程序启动原理和UIApplication的介绍

    一.UIApplication 简介       (1)UIApplication对象是应用程序的象征,一个UIApplication对象就代表一个应用程序. (2)每一个Application都有自 ...

  3. Python3和Python2中int和long的区别?

    Python3:Python3中int类型的范围是动态长度的,正整数或者负整数,用sys.getsizeof()可以看int占了几位. Python2:Python2中long类型的范围是无限大小.

  4. 常见的几种java排序算法

    一.分类: 1)插入排序(直接插入排序.希尔排序) 2)交换排序(冒泡排序.快速排序) 3)选择排序(直接选择排序.堆排序) 4)归并排序 5)分配排序(基数排序) 所需辅助空间最多:归并排序 所需辅 ...

  5. DedeCms 标签中channelartlist设置属性标签样式的方法

    实现的效果如下: {dede:channelartlist typeid='6' row='3' currentstyle='current'} <li class='{dede:field.c ...

  6. 存储过程WHERE条件不生效

    业务上有个删除操作需要涉及到几张表,一条一条操作很麻烦,所以想写个存储过程来封装下,原始语句如下: DELETE FROM AUTH_AUTHORITY WHERE `ID` in ('f_view_ ...

  7. FastJson将Java对象转换成json

    确保环境依赖都配置好! 1.在pom.xml导入依赖 <dependency> <groupId>com.alibaba</groupId> <artifac ...

  8. Pycharm下安装Numpy包

    Numpy--Numerical Python,是一个基于Python的可以存储和处理大型矩阵的库.几乎是Python 生态系统的数值计算的基石,例如Scipy,Pandas,Scikit-learn ...

  9. 使用本地shadow socks代理

    1,第一种方式 import urllib2 import socks from sockshandler import SocksiPyHandler opener = urllib2.build_ ...

  10. DS-4-单链表的各种插入与删除的实现

    typedef struct LNode { int data; struct LNode *next; }LNode, *LinkList; 带头结点的按位序插入: //在第i个位置插入元素e bo ...