「单调队列优化DP」P2034 选择数字
「单调队列优化DP」P2034 选择数字
题面描述:
给定一行n个非负整数a[1]..a[n]。现在你可以选择其中若干个数,但不能有超过k个连续的数字被选择。你的任务是使得选出的数字的和最大。
输入格式
第一行两个整数n,k
以下n行,每行一个整数表示a[i]。
输出格式
输出一个值表示答案。
输入输出样例
输入 #1
5 2
1
2
3
4
5
输出 #1
12
说明/提示
对于20%的数据,n <= 10
对于另外20%的数据, k = 1
对于60%的数据,n <= 1000
对于100%的数据,1 <= n <= 100000,1 <= k <= n,0 <= 数字大小 <= 1,000,000,000
时间限制500ms
解法
一般正常求序列几段和都要求前缀和,f的第一维都是前i项的最优值
那我们直接开始吧,
f[i]=max(f[j])+a[i] ( i-k<=j<i )
然鹅叫上去可能只对两个点(可能连样例都不过),原因是方程都错了,少了一维,i不一定选取就是最佳选择,如1 8 4 2 999 k=2,显然不选4要更优, 所以正确的转移方程:
//0表示不选第i个数,1表示选第i个数
f[0][i]=max(f[0][i-1],f[1][i-1]);
f[1][i]=max(f[0][j]-sum[j])+sum[i];
亲测O(n*n)+快读能压线过
所以考虑优化
我们用单调队列维护f[0][j]-sum[j]的最优值,因为它完全符合单调性,维护就完事
代码:
/*#!/bin/sh
dir=$GEDIT_CURRENT_DOCUMENT_DIR
name=$GEDIT_CURRENT_DOCUMENT_NAME
pre=${name%.*}
g++ -O2 $dir/$name -o $pre -g -Wall -std=c++11
if test $? -eq 0; then
gnome-terminal -x bash -c "time $dir/$pre;echo;read;"
fi*/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=1e6+5,INF=0x3f3f3f3f;
inline int read(){
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();};
while(ch>='0'&&ch<='9')s=s*10+ch-'0',ch=getchar();
return s*w;
}
int n,d,a[maxn],head=1,tail;
long long sum[maxn],f[2][maxn],q[maxn];//每个数有1e9诶
int main(){
n=read();d=read();
for(int i=1;i<=n;i++)a[i]=read(),sum[i]=sum[i-1]+a[i];
f[1][1]=a[1];tail++;//tail=0需要初始化,tail=1就不需要,推荐写tail=0
for(int i=2;i<=n;i++){
f[0][i]=max(f[0][i-1],f[1][i-1]);//不选第i个数的情况
while(head<=tail&&i-q[head]>d)head++;//维护队首,i-k>j(q[head])
f[1][i]=f[0][q[head]]-sum[q[head]]+sum[i];
while(head<=tail&&f[0][i]-sum[i]>f[0][q[tail]]-sum[q[tail]])tail--;//维护队列单调性,新数大于原数就出队
q[++tail]=i;
}
cout<<max(f[0][n],f[1][n]);
}
「单调队列优化DP」P2034 选择数字的更多相关文章
- 「学习笔记」单调队列优化dp
目录 算法 例题 最大子段和 题意 思路 代码 修剪草坪 题意 思路 代码 瑰丽华尔兹 题意 思路 代码 股票交易 题意 思路 代码 算法 使用单调队列优化dp 废话 对与一些dp的转移方程,我们可以 ...
- 【单调队列优化dp】 分组
[单调队列优化dp] 分组 >>>>题目 [题目] 给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择.你的任务是使得选出的数字的和最大 [输入格式] ...
- 单调队列优化DP,多重背包
单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
- hdu3401:单调队列优化dp
第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...
- Parade(单调队列优化dp)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others) ...
- BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP
BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...
- [小明打联盟][斜率/单调队列 优化dp][背包]
链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...
- 单调队列以及单调队列优化DP
单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...
随机推荐
- 【CSS】常用色值
常用颜色: 嫣红(red):#e54d42 桔橙(orange):#f37b1d 明黄(yellow):#fbbd08 橄榄(olive):#8dc63f 森绿(green):#39b54a 天青(c ...
- ant构建Jmeter脚本的build文件配置(build.xml)
使用此构建文件可自动发送邮件 代码如下: <?xml version="1.0" encoding="UTF8"?> <project na ...
- 二叉树的层次序列化和反序列化-----stringstream
string serialize(TreeNode* root) {//层序便利,将空的子节点也放入到字符串 ostringstream out; queue<TreeNode*> q; ...
- Python内置Turtle绘图库方法简介+多案例
urtle库是Python语言中一个很流行的绘制图像的函数库,想象一个小乌龟,在一个横轴为x.纵轴为y的坐标系原点,(0,0)位置开始,它根据一组函数指令的控制,在这个平面坐标系中移动,从而在它爬行的 ...
- 认识OSI七层模型
概述: OSI全名(Open System Interconnect),是指定的开放系统互连参考模型,为开放式互连信息系统提供了一种功能结构的框架.层次:从低到高的层级:物理层.数据链路层.网络层.传 ...
- 全网最全95道MongoDB面试题1万字详细解析
1.mongodb是什么? MongoDB 是由 C++语言编写的,是一个基于分布式文件存储的开源数据库系统. 在高负载的情况下,添加更多的节点,可以保证服务器性能. MongoDB 旨在给 WEB ...
- 宝塔部署时,出现“open_basedir restriction in effect”错误
下面是错误代码: Warning: require(): open_basedir restriction in effect. Warning: require(XXXXXXXXXXX): fail ...
- 局域网访问电脑中VMware虚拟机
场景 你在自己的台式机或笔记本中使用VMware Workstation搭建了一个虚拟机系统,如Debian.Fedora等Linux系统.现在你希望使用局域网中另一台电脑访问你电脑上的虚拟机系统,怎 ...
- refs转发 React.forwardRef
2020-04-01 refs转发 前几天刚总结完ref&DOM之间的关系,并且想通了3种ref的绑定方式 今天总结一下refs转发 这是react中一直困扰我的一个点 示例: 输入: wor ...
- VNC连接cnetos图形化界面
VNC连接cnetos图形化界面 Linux系统在服务器上一般都直接最小化安装,是不安装图形界面的,但是有时候,有一些特殊情况,需要使用图形界面,而下面就利用VNC来实现类似windows的远程桌面功 ...