10 并发编程-(线程)-GIL全局解释器锁&死锁与递归锁
一、GIL全局解释器锁
1、引子
在Cpython解释器中,同一个进程下开启的多线程,同一时刻只能有一个线程执行,无法利用多核优势
首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念。
就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码。>有名的编译器例如GCC,INTEL C++,Visual C++等。Python也一样,同样一段代码可以通过CPython,PyPy,Psyco等不同的Python执行环境来执行。像其中的JPython就没有GIL。然而因为CPython是大部分环境下默认的Python执行环境。所以在很多人的概念里CPython就是Python,也就想当然的把GIL归结为Python语言的缺陷。
所以这里要先明确一点:GIL并不是Python的特性,Python完全可以不依赖于GIL
2、GIL介绍
GIL本质就是一把互斥锁,既然是互斥锁,所有互斥锁的本质都一样,都是将并发运行变成串行,以此来控制同一时间内共享数据只能被一个任务所修改,进而保证数据安全。
可以肯定的一点是:保护不同的数据的安全,就应该加不同的锁。
要想了解GIL,首先确定一点:每次执行python程序,都会产生一个独立的进程。例如python test.py,python aaa.py,python bbb.py会产生3个不同的python进程
如果多个线程的target=work,那么执行流程是
多个线程先访问到解释器的代码,即拿到执行权限,然后将target的代码交给解释器的代码去执行
3、GIL与Lock
机智的同学可能会问到这个问题:Python已经有一个GIL来保证同一时间只能有一个线程来执行了,为什么这里还需要lock?
首先,我们需要达成共识:锁的目的是为了保护共享的数据,同一时间只能有一个线程来修改共享的数据
然后,我们可以得出结论:保护不同的数据就应该加不同的锁。
最后,问题就很明朗了,GIL 与Lock是两把锁,保护的数据不一样,前者是解释器级别的(当然保护的就是解释器级别的数据,比如垃圾回收的数据),后者是保护用户自己开发的应用程序的数据,很明显GIL不负责这件事,只能用户自定义加锁处理,即Lock,如下图
1、100个线程去抢GIL锁,即抢执行权限
2、肯定有一个线程先抢到GIL(暂且称为线程1),然后开始执行,一旦执行就会拿到lock.acquire()
3、极有可能线程1还未运行完毕,就有另外一个线程2抢到GIL,然后开始运行,但线程2发现互斥锁lock还未被线程1释放,于是阻塞,被迫交出执行权限,即释放GIL
4、直到线程1重新抢到GIL,开始从上次暂停的位置继续执行,直到正常释放互斥锁lock,然后其他的线程再重复2 3 4的过程
4、GIL与多线程(计算密集型用 多进程 I/O密集型用 多线程)
应用:
多线程用于IO密集型,如socket,爬虫,web
多进程用于计算密集型,如金融分析
如果并发的多个任务是计算密集型:多进程效率高
from multiprocessing import Process
from threading import Thread
import os,time
def work():
res=0
for i in range(100000000):
res*=i if __name__ == '__main__':
l=[]
print(os.cpu_count()) #本机为4核
start=time.time()
for i in range(4):
p=Process(target=work) #耗时5s多
p=Thread(target=work) #耗时18s多
l.append(p)
p.start()
for p in l:
p.join()
stop=time.time()
print('run time is %s' %(stop-start))
如果并发的多个任务是I/O密集型:多线程效率高
#如果并发的多个任务是I/O密集型:多线程效率高
from multiprocessing import Process
from threading import Thread
import threading
import os,time
def work():
time.sleep(2)#类似i/o
# print('===>') if __name__ == '__main__':
l=[]
print(os.cpu_count()) #本机为4核
start=time.time()
for i in range(400):
p=Process(target=work) #耗时14s多,大部分时间耗费在创建进程上,
#p=Thread(target=work) #耗时2s多
l.append(p)
p.start()
for p in l:
p.join()
stop=time.time()
print('run time is %s' %(stop-start))
二、死锁与递归锁
1、死锁现象
所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。
此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程,如下就是死锁
from threading import Thread,Lock
import time
mutexA=Lock()
mutexB=Lock() class MyThread(Thread):
def run(self):
self.func1()
self.func2()
def func1(self):
mutexA.acquire()
print('\033[41m%s 拿到A锁\033[0m' %self.name) mutexB.acquire()
print('\033[42m%s 拿到B锁\033[0m' %self.name)
mutexB.release() mutexA.release() def func2(self):
mutexB.acquire()
print('\033[43m%s 拿到B锁\033[0m' %self.name)
time.sleep(2) mutexA.acquire()
print('\033[44m%s 拿到A锁\033[0m' %self.name)
mutexA.release() mutexB.release() if __name__ == '__main__':
for i in range(10):
t=MyThread()
t.start()
执行效果 Thread-1 拿到A锁
Thread-1 拿到B锁
Thread-1 拿到B锁
Thread-2 拿到A锁 #出现死锁,整个程序阻塞住 Thread-1 拿到B锁后要去拿A锁,但A所在Thread-2手上
Thread-2 拿到A锁后要去拿B锁,但B锁在Thread-1手上
2、死锁的解决办法---递归锁
递归锁:可以连续acquire多次,每acquire一次计数器+1,只有计数为0时,才能被抢到
解决方法,递归锁,在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。
这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。
直到一个线程所有的acquire都被release,其他的线程才能获得资源。
上面的例子如果使用RLock代替Lock,则不会发生死锁,二者的区别是:递归锁可以连续acquire多次,而互斥锁只能acquire一次
# 递归锁:可以连续acquire多次,每acquire一次计数器+1,只有计数为0时,才能被抢到acquire
from threading import Thread,RLock
import time mutexB=mutexA=RLock() class MyThread(Thread):
def run(self):
self.f1()
self.f2() def f1(self):
mutexA.acquire()
print('%s 拿到了A锁' %self.name) mutexB.acquire()
# 此时acquire 计数器为2
print('%s 拿到了B锁' %self.name)
mutexB.release() mutexA.release()
# 此时acquire计数器为0 这样其他的线程才可以抢锁 def f2(self):
mutexB.acquire()
print('%s 拿到了B锁' % self.name)
time.sleep(1) mutexA.acquire()
print('%s 拿到了A锁' % self.name)
mutexA.release() mutexB.release() if __name__ == '__main__':
for i in range(10):
t=MyThread()
t.start() Thread-1 拿到了A锁
Thread-1 拿到了B锁
Thread-1 拿到了B锁
Thread-1 拿到了A锁
Thread-2 拿到了A锁
Thread-2 拿到了B锁
Thread-2 拿到了B锁
Thread-2 拿到了A锁
Thread-4 拿到了A锁
Thread-4 拿到了B锁
Thread-4 拿到了B锁
Thread-4 拿到了A锁
Thread-6 拿到了A锁
Thread-6 拿到了B锁
Thread-6 拿到了B锁
Thread-6 拿到了A锁
Thread-8 拿到了A锁
Thread-8 拿到了B锁
Thread-8 拿到了B锁
Thread-8 拿到了A锁
Thread-10 拿到了A锁
Thread-10 拿到了B锁
Thread-10 拿到了B锁
Thread-10 拿到了A锁
Thread-5 拿到了A锁
Thread-5 拿到了B锁
Thread-5 拿到了B锁
Thread-5 拿到了A锁
Thread-9 拿到了A锁
Thread-9 拿到了B锁
Thread-9 拿到了B锁
Thread-9 拿到了A锁
Thread-7 拿到了A锁
Thread-7 拿到了B锁
Thread-7 拿到了B锁
Thread-7 拿到了A锁
Thread-3 拿到了A锁
Thread-3 拿到了B锁
Thread-3 拿到了B锁
Thread-3 拿到了A锁
10 并发编程-(线程)-GIL全局解释器锁&死锁与递归锁的更多相关文章
- python 并发编程 多线程 GIL全局解释器锁基本概念
首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念. 就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码. ...
- python网络编程--线程GIL(全局解释器锁)
一:什么是GIL 在CPython,全局解释器锁,或GIL,是一个互斥体防止多个本地线程执行同时修改同一个代码.这把锁是必要的主要是因为当前的内存管理不是线程安全的.(然而,由于GIL存在,其他特性已 ...
- 53_并发编程-线程-GIL锁
一.GIL - 全局解释器锁 有了GIL的存在,同一时刻同一进程中只有一个线程被执行:由于线程不能使用cpu多核,可以开多个进程实现线程的并发,因为每个进程都会含有一个线程,每个进程都有自己的GI ...
- GIL全局解释器锁-死锁与递归锁-信号量-event事件
一.全局解释器锁GIL: 官方的解释:掌握概念为主 """ In CPython, the global interpreter lock, or GIL, is a m ...
- 同步锁 死锁与递归锁 信号量 线程queue event事件
二个需要注意的点: 1 线程抢的是GIL锁,GIL锁相当于执行权限,拿到执行权限后才能拿到互斥锁Lock,其他线程也可以抢到GIL,但如果发现Lock任然没有被释放则阻塞,即便是拿到执行权限GIL也要 ...
- Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures
参考博客: https://www.cnblogs.com/xiao987334176/p/9046028.html 线程简述 什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线 ...
- python 全栈开发,Day42(Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures)
昨日内容回顾 线程什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线程是什么关系? 线程是在进程中的 一个执行单位 多进程 本质上开启的这个进程里就有一个线程 多线程 单纯的在当 ...
- python并发编程之线程(创建线程,锁(死锁现象,递归锁),GIL锁)
什么是线程 进程:资源分配单位 线程:cpu执行单位(实体),每一个py文件中就是一个进程,一个进程中至少有一个线程 线程的两种创建方式: 一 from threading import Thread ...
- 线程全局修改、死锁、递归锁、信号量、GIL以及多进程和多线程的比较
线程全局修改 x = 100 def func1(): global x print(x) changex() print(x) def changex(): global x x = 50 func ...
随机推荐
- 监控Linux的Steps&Q&A
spolight的下载地址:https://www.quest.com/spotlight-on-windows/ 问题1.sar -u 之后,只有一条记录.这种情况执行一下:sudo sar -d; ...
- Javascript 在严格模式下禁止指向 this
如下代码, f() 输出的是 false,而 f2() 输出的是 true. 这是因为 f2 在严格模式下禁止 this 指向全局,所以 this 是 undefined, !this 当然是 tru ...
- JZ2440 裸机驱动 第11章 通用异步收发器UART
本章目标: 了解UART原理: 掌握S3C2410/S3C2440中UART的使用 11.1 UART原理及UART内部使用方法 11.1.1 UART原理说明 UART用于传输串行数据: ...
- sql 防注入 维基百科
http://zh.wikipedia.org/wiki/SQL%E8%B3%87%E6%96%99%E9%9A%B1%E7%A2%BC%E6%94%BB%E6%93%8A SQL攻击(SQL inj ...
- android 获取当前 activity
ActivityManager am = (ActivityManager) this .getSystemService(ACTIVITY_SERVICE); List<RunningTask ...
- Hadoop专业解决方案-第13章 Hadoop的发展趋势
一.前言: 非常感谢Hadoop专业解决方案群:313702010,兄弟们的大力支持,在此说一声辛苦了,经过两周的努力,已经有啦初步的成果,目前第13章 Hadoop的发展趋势小组已经翻译完成,在此对 ...
- canvas基础之变换
2D绘制上下文支持各种基本的绘制变换: rotate(angle):围绕原点旋转图像angle弧度.(举例:如需旋转 5 度,可规定下面的公式:5*Math.PI/180.) scale(scaleX ...
- 术语-软件-软件开发:SDK(软件开发工具包)
ylbtech-术语-软件-软件开发:SDK(软件开发工具包) 软件开发工具包(缩写:SDK.外语全称:Software Development Kit)一般都是一些软件工程师为特定的软件包.软件框架 ...
- python中将HTTP头部中的GMT时间转换成datetime时间格式
原文: https://blog.csdn.net/zoulonglong/article/details/80585716 需求背景:目前在做接口的自动化测试平台,由于接口用例执行后返回的结果中的时 ...
- [UE4]场景光照改进PostProcessVolume
PostProcessVolume可以做的效果很多,其中就可以实现太阳光斑效果. Unbound勾上上,就表示不受“PostProcessVolume”组件的大小限制,直接应用到整个世界.如果不勾选, ...